Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling

被引:102
作者
Breyer, Christian [1 ]
Fasihi, Mahdi [1 ]
Aghahosseini, Arman [1 ]
机构
[1] Lappeenranta Univ Technol, Skinnarilankatu 34, Lappeenranta 53850, Finland
关键词
Negative emission technology; CO2 direct air capture; Energy transition; 100% renewable energy; Maghreb; 139; COUNTRIES; CO2; REMOVAL; STORAGE; TRANSITION; WATER; INVESTMENT; SCENARIOS; DEMAND; BECCS; WIND;
D O I
10.1007/s11027-019-9847-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Pathways for achieving the 1.5-2 degrees C global temperature moderation target imply a massive scaling of carbon dioxide (CO2) removal technologies, in particular in the 2040s and onwards. CO2 direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands for low-temperature solid-sorbent DAC are mainly heat at around 100 degrees C and electricity, which lead to sustainably operated DAC systems based on low-cost renewable electricity and heat pumps for the heat supply. This analysis is carried out for the case of the Maghreb region, which enjoys abundantly available low-cost renewable energy resources. The energy transition results for the Maghreb region lead to a solar photovoltaic (PV)-dominated energy supply with some wind energy contribution. DAC systems will need the same energy supply structure. The research investigates the levelised cost of CO2 DAC (LCOD) in high spatial resolution and is based on full hourly modelling for the Maghreb region. The key results are LCOD of about 55 euro/t(CO2) in 2050 with a further cost reduction potential of up to 50%. The area demand is considered and concluded to be negligible. Major conclusions for CO2 removal as a new energy sector are drawn. Key options for a global climate change mitigation strategy are first an energy transition towards renewable energy and second NETs for achieving the targets of the Paris Agreement.
引用
收藏
页码:43 / 65
页数:23
相关论文
共 52 条
[31]   100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World [J].
Jacobson, Mark Z. ;
Delucchi, Mark A. ;
Bauer, Zack A. F. ;
Goodman, Savannah C. ;
Chapman, William E. ;
Cameron, Mary A. ;
Bozonnat, Cedric ;
Chobadi, Liat ;
Clonts, Hailey A. ;
Enevoldsen, Peter ;
Erwin, Jenny R. ;
Fobi, Simone N. ;
Goldstrom, Owen K. ;
Hennessy, Eleanor M. ;
Liu, Jingyi ;
Lo, Jonathan ;
Meyer, Clayton B. ;
Morris, Sean B. ;
Moy, Kevin R. ;
O'Neill, Patrick L. ;
Petkov, Ivalin ;
Redfern, Stephanie ;
Schucker, Robin ;
Sontag, Michael A. ;
Wang, Jingfan ;
Weiner, Eric ;
Yachanin, Alexander S. .
JOULE, 2017, 1 (01) :108-121
[32]   A Process for Capturing CO2 from the Atmosphere (vol 2, pg 1573, 2018) [J].
Keith, David W. ;
Holmes, Geoffrey ;
Angelo, David St. ;
Heidel, Kenton .
JOULE, 2018, 2 (08) :1635-1635
[33]   An energy transition pathway for Turkey to achieve 100% renewable energy powered electricity, desalination and non-energetic industrial gas demand sectors by 2050 [J].
Kilickaplan, Anil ;
Bogdanov, Dmitrii ;
Peker, Onur ;
Caldera, Upeksha ;
Aghahosseini, Arman ;
Breyer, Christian .
SOLAR ENERGY, 2017, 158 :218-235
[34]  
King LC, 2018, NAT ENERGY, V3, P334, DOI 10.1038/s41560-018-0116-1
[35]   Energy storage deployment and innovation for the clean energy transition [J].
Kittner, Noah ;
Lill, Felix ;
Kammen, Daniel M. .
NATURE ENERGY, 2017, 2 (09)
[36]   Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century [J].
Kriegler, Elmar ;
Bauer, Nico ;
Popp, Alexander ;
Humpenoeder, Florian ;
Leimbach, Marian ;
Strefler, Jessica ;
Baumstark, Lavinia ;
Bodirsky, Benjamin Leon ;
Hilaire, Jerome ;
Klein, David ;
Mouratiadou, Ioanna ;
Weindl, Isabelle ;
Bertram, Christoph ;
Dietrich, Jan -Philipp ;
Luderer, Gunnar ;
Pehl, Michaja ;
Pietzcker, Robert ;
Piontek, Franziska ;
Lotze-Campen, Hermann ;
Biewald, Anne ;
Bonsch, Markus ;
Giannousakis, Anastasis ;
Kreidenweis, Ulrich ;
Mueller, Christoph ;
Rolinski, Susanne ;
Schultes, Anselm ;
Schwanitz, Jana ;
Stevanovic, Miodrag ;
Calvin, Katherine ;
Emmerling, Johannes ;
Fujimori, Shinichiro ;
Edenhofer, Ottmar .
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2017, 42 :297-315
[37]   Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO2 from Air [J].
Kulkarni, Ambarish R. ;
Sholl, David S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (25) :8631-8645
[38]   An overview of current status of carbon dioxide capture and storage technologies [J].
Leung, Dennis Y. C. ;
Caramanna, Giorgio ;
Maroto-Valer, M. Mercedes .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 39 :426-443
[39]   Inefficient power generation as an optimal route to negative emissions via BECCS? [J].
Mac Dowell, Niall ;
Fajardy, Mathilde .
ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (04)
[40]   Seabed scars raise questions over carbon-storage plan [J].
Monastersky, Richard .
NATURE, 2013, 504 (7480) :339-340