Concise Review: Putting a Finger on Stem Cell Biology: Zinc Finger Nuclease-Driven Targeted Genetic Editing in Human Pluripotent Stem Cells

被引:42
作者
Collin, Joseph [2 ]
Lako, Majlinda [1 ,2 ]
机构
[1] Newcastle Univ, Inst Med Genet, Int Ctr Life, Newcastle Upon Tyne NE1 3BZ, Tyne & Wear, England
[2] Ctr Invest Principe Felipe, Valencia, Spain
基金
英国生物技术与生命科学研究理事会;
关键词
Zinc finger nucleases; Human pluripotent stem cells; Gene targeting; HOMOLOGOUS RECOMBINATION; TRANSGENE EXPRESSION; GENOMIC STABILITY; KNOCKOUT RATS; MOUSE MODEL; HUMAN ESCS; DNA; MUTAGENESIS; EFFICIENT; THERAPY;
D O I
10.1002/stem.658
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Human pluripotent stem cells (hPSCs) encompassing human embryonic stem cells and human induced pluripotent stem cells (hiPSCs) have a wide appeal for numerous basic biology studies and for therapeutic applications because of their potential to give rise to almost any cell type in the human body and immense ability to self-renew. Much attention in the stem cell field is focused toward the study of gene-based anomalies relating to the causative affects of human disease and their correction with the potential for patient-specific therapies using gene corrected hiPSCs. Therefore, the genetic manipulation of stem cells is clearly important for the development of future medicine. Although successful targeted genetic engineering in hPSCs has been reported, these cases are surprisingly few because of inherent technical limitations with the methods used. The development of more robust and efficient means by which to achieve specific genomic modifications in hPSCs has far reaching implications for stem cell research and its applications. Recent proof-of-principle reports have shown that genetic alterations with minimal toxicity are now possible through the use of zinc finger nucleases (ZFNs) and the inherent DNA repair mechanisms within the cell. In light of recent comprehensive reviews that highlight the applications, methodologies, and prospects of ZFNs, this article focuses on the application of ZFNs to stem cell biology, discussing the published work to date, potential problems, and future uses for this technology both experimentally and therapeutically. STEM CELLS 2011;29:1021-1033
引用
收藏
页码:1021 / 1033
页数:13
相关论文
共 99 条
[1]   Chance or necessity? Insertional mutagenesis in gene therapy and its consequences [J].
Baum, C ;
von Kalle, C ;
Staal, FJT ;
Li, ZX ;
Fehse, B ;
Schmidt, M ;
Weerkamp, F ;
Karlsson, S ;
Wagemaker, G ;
Williams, DA .
MOLECULAR THERAPY, 2004, 9 (01) :5-13
[2]   Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases [J].
Beumer, Kelly J. ;
Trautman, Jonathan K. ;
Bozas, Ana ;
Liu, Ji-Long ;
Rutter, Jared ;
Gall, Joseph G. ;
Carroll, Dana .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (50) :19821-19826
[3]   Stimulation of homologous recombination through targeted cleavage by chimeric nucleases [J].
Bibikova, M ;
Carroll, D ;
Segal, DJ ;
Trautman, JK ;
Smith, J ;
Kim, YG ;
Chandrasegaran, S .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (01) :289-297
[4]   Enhancing gene targeting with designed zinc finger nucleases [J].
Bibikova, M ;
Beumer, K ;
Trautman, JK ;
Carroll, D .
SCIENCE, 2003, 300 (5620) :764-764
[5]  
Bibikova M, 2002, GENETICS, V161, P1169
[6]   DIFFERENCES AND SIMILARITIES IN DNA-BINDING PREFERENCES OF MYOD AND E2A PROTEIN COMPLEXES REVEALED BY BINDING-SITE SELECTION [J].
BLACKWELL, TK ;
WEINTRAUB, H .
SCIENCE, 1990, 250 (4984) :1104-1110
[7]   Genetic Analysis of Zinc-Finger Nuclease-Induced Gene Targeting in Drosophila [J].
Bozas, Ana ;
Beumer, Kelly J. ;
Trautman, Jonathan K. ;
Carroll, Dana .
GENETICS, 2009, 182 (03) :641-651
[8]   Bypass of senescence after disruption of p21(CIP1/WAF1) gene in normal diploid human fibroblasts [J].
Brown, JP ;
Wei, WY ;
Sedivy, JM .
SCIENCE, 1997, 277 (5327) :831-834
[9]   Chromosomal translocations induced at specified loci in human stem cells [J].
Brunet, Erika ;
Simsek, Deniz ;
Tomishima, Mark ;
DeKelver, Russell ;
Choi, Vivian M. ;
Gregory, Philip ;
Urnov, Fyodor ;
Weinstock, David M. ;
Jasin, Maria .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (26) :10620-10625
[10]   Genome wide analysis of retroviral DNA integration [J].
Bushman, F ;
Lewinski, M ;
Ciuffi, A ;
Barr, S ;
Leipzig, J ;
Hannenhalli, S ;
Hoffmann, C .
NATURE REVIEWS MICROBIOLOGY, 2005, 3 (11) :848-858