Fragility and indestructibility of the tree property

被引:18
作者
Unger, Spencer [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
Tree property; Indestructibility; Fragility; Large cardinals; Forcing;
D O I
10.1007/s00153-012-0287-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove various theorems about the preservation and destruction of the tree property at omega (2). Working in a model of Mitchell [9] where the tree property holds at omega (2), we prove that omega (2) still has the tree property after ccc forcing of size or adding an arbitrary number of Cohen reals. We show that there is a relatively mild forcing in this same model which destroys the tree property. Finally we prove from a supercompact cardinal that the tree property at omega (2) can be indestructible under omega (2)-directed closed forcing.
引用
收藏
页码:635 / 645
页数:11
相关论文
共 13 条
[1]   ARONSZAJN TREES ON CHI-2 AND CHI-3 [J].
ABRAHAM, U .
ANNALS OF PURE AND APPLIED LOGIC, 1983, 24 (03) :213-230
[2]  
[Anonymous], 1926, FUND MATH, DOI DOI 10.4064/FM-8-1-114-134
[3]   The tree property [J].
Cummings, J ;
Foreman, M .
ADVANCES IN MATHEMATICS, 1998, 133 (01) :1-32
[4]  
Devlin K. J., 1984, Constructibility
[5]  
Foreman M., UNPUB
[6]  
Jech T. J., 2003, SET THEORY, V14
[7]   Fragments of Martin's maximum in generic extensions [J].
König, B ;
Yoshinobu, Y .
MATHEMATICAL LOGIC QUARTERLY, 2004, 50 (03) :297-302
[8]   The tree property at successors of singular cardinals [J].
Magidor, M ;
Shelah, S .
ARCHIVE FOR MATHEMATICAL LOGIC, 1996, 35 (5-6) :385-404
[9]  
Mitchell W., 1972, Annals of Mathematical Logic, V5, P21, DOI [10.1016/0003-4843(72)90017-4, DOI 10.1016/0003-4843(72)90017-4]
[10]  
Neeman I., TREE PROPER IN PRESS