On splitting methods for Schrodinger-Poisson and cubic nonlinear Schrodinger equations

被引:254
|
作者
Lubich, Christian [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
split-step method; split-operator scheme; semilinear Schrodinger equations; error analysis; stability; regularity;
D O I
10.1090/S0025-5718-08-02101-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an error analysis of Strang-type splitting integrators for nonlinear Schrodinger equations. For Schrodinger-Poisson equations with an H-4-regular solution, a first-order error bound in the H-1 norm is shown and used to derive a second-order error bound in the L-2 norm. For the cubic Schrodinger equation with an H-4-regular solution first-order convergence in the H-2 norm is used to obtain second-order convergence in the L-2 norm. Basic tools in the error analysis are Lie-commutator bounds for estimating the local error and H-m-conditional stability for error propagation, where m = 1 for the Schrodinger-Poisson system and m = 2 for the cubic Schrodinger equation.
引用
收藏
页码:2141 / 2153
页数:13
相关论文
共 50 条
  • [41] Adaptive splitting methods for nonlinear Schrodinger equations in the semiclassical regime
    Auzinger, Winfried
    Kassebacher, Thomas
    Koch, Othmar
    Thalhammer, Mechthild
    NUMERICAL ALGORITHMS, 2016, 72 (01) : 1 - 35
  • [42] The Vlasov-Poisson equations as the semiclassical limit of the Schrodinger-Poisson equations: A numerical study
    Jin, Shi
    Liao, Xiaomei
    Yang, Xu
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2008, 5 (03) : 569 - 587
  • [43] Linear Newtonian perturbation theory from the Schrodinger-Poisson equations
    Banik, Nilanjan
    Christopherson, Adam J.
    Sikivie, Pierre
    Todarello, Elisa Maria
    PHYSICAL REVIEW D, 2015, 91 (12)
  • [44] Efficient solution of the Schrodinger-Poisson equations in semiconductor device simulations
    Trellakis, A
    Andlauer, T
    Vogl, P
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 602 - 609
  • [45] Nontrivial solutions for indefinite Schrodinger-Poisson systems and Kirchhoff equations
    Jiang, Shuai
    APPLIED MATHEMATICS LETTERS, 2024, 154
  • [46] On ground state solutions for the Schrodinger-Poisson equations with critical growth
    Liu, Zhisu
    Guo, Shangjiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 435 - 448
  • [47] Schrodinger-Poisson equations without Ambrosetti-Rabinowitz condition
    Alves, Claudianor O.
    Soares Souto, Marco Aurelio
    Soares, Sergio H. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) : 584 - 592
  • [48] Nonlinear Schrodinger-Poisson theory for quantum-dot Helium
    Reinisch, Gilbert
    Gudmundsson, Vidar
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (09) : 902 - 907
  • [49] Existence and nonlinear stability of stationary states of the Schrodinger-Poisson system
    Markowich, PA
    Rein, G
    Wolansky, G
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (5-6) : 1221 - 1239
  • [50] On the nonlinear Schrodinger-Poisson systems with positron-electron interaction
    Chen, Ching-yu
    Kuo, Yueh-cheng
    Wu, Tsung-fang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 408 : 368 - 408