On splitting methods for Schrodinger-Poisson and cubic nonlinear Schrodinger equations

被引:254
|
作者
Lubich, Christian [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
split-step method; split-operator scheme; semilinear Schrodinger equations; error analysis; stability; regularity;
D O I
10.1090/S0025-5718-08-02101-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an error analysis of Strang-type splitting integrators for nonlinear Schrodinger equations. For Schrodinger-Poisson equations with an H-4-regular solution, a first-order error bound in the H-1 norm is shown and used to derive a second-order error bound in the L-2 norm. For the cubic Schrodinger equation with an H-4-regular solution first-order convergence in the H-2 norm is used to obtain second-order convergence in the L-2 norm. Basic tools in the error analysis are Lie-commutator bounds for estimating the local error and H-m-conditional stability for error propagation, where m = 1 for the Schrodinger-Poisson system and m = 2 for the cubic Schrodinger equation.
引用
收藏
页码:2141 / 2153
页数:13
相关论文
共 50 条
  • [31] Multiplicity of positive solutions for a nonlinear Schrodinger-Poisson system
    Sun, Juntao
    Wu, Tsung-fang
    Feng, Zhaosheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) : 586 - 627
  • [32] Existence and multiplicity results for the nonlinear Schrodinger-Poisson systems
    Yang, Ming-Hai
    Han, Zhi-Qing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) : 1093 - 1101
  • [33] On the existence of ground states for nonlinear Schrodinger-Poisson equation
    De Leo, Mariano
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) : 979 - 986
  • [34] Multiple Standing Waves for Nonlinear Schrodinger-Poisson Systems
    Zhou, Jian
    Wu, Yunshun
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [35] On the planar Schrodinger-Poisson system
    Cingolani, Silvia
    Weth, Tobias
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (01): : 169 - 197
  • [36] The quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [37] THE SCHRODINGER-POISSON SYSTEM ON THE SPHERE
    Gerard, Patrick
    Mehats, Florian
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) : 1232 - 1268
  • [38] Dissipative Schrodinger-Poisson systems
    Baro, M
    Kaiser, HC
    Neidhardt, H
    Rehberg, J
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (01) : 21 - 43
  • [39] On a quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [40] The Schrodinger-Poisson eigenmatrix problem
    Lange, H
    Toomire, B
    Zweifel, PF
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 203 (02) : 289 - 302