Instrumental variable estimation in a probit measurement error model

被引:6
作者
Buzas, JS
Stefanski, LA
机构
[1] UNIV VERMONT,DEPT MATH & STAT,BURLINGTON,VT 05401
[2] N CAROLINA STATE UNIV,DEPT STAT,RALEIGH,NC 27695
基金
美国国家科学基金会;
关键词
maximum likelihood; generalized linear models; surrogate; two-stage estimator;
D O I
10.1016/0378-3758(95)00180-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Probit regression is studied when normally distributed covariates are subject to normally distributed measurement errors. Under the assumption that surrogate instrumental variables are available, the parameters in the probit model are shown to be identified. The maximum likelihood estimator and an easily computed two-stage estimator are derived and studied. The two-stage estimator is shown to be asymptotically efficient. Simulation results complement the theory and provide evidence of robustness to the normality assumptions.
引用
收藏
页码:47 / 62
页数:16
相关论文
共 15 条
[1]   INSTRUMENTAL VARIABLE ESTIMATOR FOR THE NONLINEAR ERRORS-IN-VARIABLES MODEL [J].
AMEMIYA, Y .
JOURNAL OF ECONOMETRICS, 1985, 28 (03) :273-289
[2]   2-STAGE INSTRUMENTAL VARIABLE ESTIMATORS FOR THE NONLINEAR ERRORS-IN-VARIABLES MODEL [J].
AMEMIYA, Y .
JOURNAL OF ECONOMETRICS, 1990, 44 (03) :311-332
[3]  
Amemiya Y., 1990, STAT ANAL MEASUREMEN, P147
[4]   ON ERRORS-IN-VARIABLES IN BINARY REGRESSION - BERKSON CASE [J].
BURR, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :739-743
[5]  
BUZAS JS, 1993, THESIS N CAROLINA ST
[6]   MEASUREMENT ERROR, INSTRUMENTAL VARIABLES AND CORRECTIONS FOR ATTENUATION WITH APPLICATIONS TO METAANALYSES [J].
CARROLL, RJ ;
STEFANSKI, LA .
STATISTICS IN MEDICINE, 1994, 13 (12) :1265-1282
[7]  
CARROLL RJ, 1984, BIOMETRIKA, V71, P19, DOI 10.2307/2336392
[8]   APPROXIMATE QUASI-LIKELIHOOD ESTIMATION IN MODELS WITH SURROGATE PREDICTORS [J].
CARROLL, RJ ;
STEFANSKI, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (411) :652-663
[9]  
Carroll RJ., 1995, MEASUREMENT ERROR NO
[10]  
Fuller W. A., 2009, Measurement error models