Light-cone sum rules for B→π form factors revisited

被引:141
作者
Duplancic, G. [1 ,2 ]
Khodjamirian, A. [3 ]
Mannel, Th. [3 ]
Melic, B. [4 ]
Offen, N. [5 ]
机构
[1] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany
[2] Rudjer Boskovic Inst, Div Theoret Phys, HR-10002 Zagreb, Croatia
[3] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany
[4] Rudjer Boskovic Inst, Div Theoret Phys, HR-10002 Zagreb, Croatia
[5] Univ Paris Sud 11, CNRS, Phys Theor Lab, F-91405 Orsay, France
关键词
D O I
10.1088/1126-6708/2008/04/014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We reconsider and update the QCD light-cone sum rules for B ->pi form factors. The gluon radiative corrections to the twist-2 and twist-3 terms in the correlation functions are calculated. The (MS) over bar b-quark mass is employed, instead of the one-loop pole mass used in the previous analyses. The light-cone sum rule for f(B pi)(+)(q(2)) is fitted to the measured q(2)-distribution in B ->pi l nu(l), fixing the input parameters with the largest uncertainty: the Gegenbauer moments of the pion distribution amplitude. For the B ->pi vector form factor at zero momentum transfer we predict f(B pi)(+)(0)=0.26(-0.030)(+0.04). Combining it with the value of the product vertical bar V(ub)f(B pi)(+)(0)vertical bar extracted from experiment, we obtain vertical bar V-ub vertical bar=(3.5 +/- 0.4 +/- 0.2 +/- 0.1)x10(-3). In addition, the scalar and penguin B ->pi form factors f(B pi)(0)(q(2)) and f(B pi)(T)(q(2)) are calculated.
引用
收藏
页数:35
相关论文
共 54 条
[1]  
ALIEV TM, 1983, SOV J NUCL PHYS+, V38, P936
[2]   Light cone QCD sum rule analysis of B->Kl(+)l(-) decay [J].
Aliev, TM ;
Koru, H ;
Ozpineci, A ;
Savci, M .
PHYSICS LETTERS B, 1997, 400 (1-2) :194-205
[3]   Precision model independent determination of |Vub| from B→πlν -: art. no. 071802 [J].
Arnesen, CM ;
Grinstein, B ;
Rothstein, IZ ;
Stewart, IW .
PHYSICAL REVIEW LETTERS, 2005, 95 (07)
[4]   Measurement of the B0→π-l+ν form-factor shape and branching fraction, and determination of |Vub| with a loose neutrino reconstruction technique [J].
Aubert, B. ;
Bona, M. ;
Boutigny, D. ;
Karyotakis, Y. ;
Lees, J. P. ;
Poireau, V. ;
Prudent, X. ;
Tisserand, V. ;
Zghiche, A. ;
Grauges, E. ;
Palano, A. ;
Chen, J. C. ;
Qi, N. D. ;
Rong, G. ;
Wang, P. ;
Zhu, Y. S. ;
Eigen, G. ;
Ofte, I. ;
Stugu, B. ;
Abrams, G. S. ;
Battaglia, M. ;
Brown, D. N. ;
Button-Shafer, J. ;
Cahn, R. N. ;
Groysman, Y. ;
Jacobsen, R. G. ;
Kadyk, J. A. ;
Kerth, L. T. ;
Kolomensky, Yu. G. ;
Kukartsev, G. ;
Pegna, D. Lopes ;
Lynch, G. ;
Mir, L. M. ;
Orimoto, T. J. ;
Pripstein, M. ;
Roe, N. A. ;
Ronan, M. T. ;
Tackmann, K. ;
Wenzel, W. A. ;
Sanchez, P. del Amo ;
Barrett, M. ;
Harrison, T. J. ;
Hart, A. J. ;
Hawkes, C. M. ;
Watson, A. T. ;
Held, T. ;
Koch, H. ;
Lewandowski, B. ;
Pelizaeus, M. ;
Peters, K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (09)
[5]   Radiative corrections to the decay B→πeν and the heavy quark limit [J].
Bagan, E ;
Ball, P ;
Braun, VM .
PHYSICS LETTERS B, 1998, 417 (1-2) :154-162
[6]   Pion form factor in QCD: From nonlocal condensates to next-to-leading-order analytic perturbation theory (vol D 70, art no 033014, 2004) [J].
Bakulev, AP ;
Passek-Kumericki, K ;
Schroers, W ;
Stefanis, NG .
PHYSICAL REVIEW D, 2004, 70 (07)
[7]   Pion form factor in QCD: From nonlocal condensates to next-to-leading-order analytic perturbation theory [J].
Bakulev, AP ;
Passek-Kumericki, K ;
Schroers, W ;
Stefanis, NG .
PHYSICAL REVIEW D, 2004, 70 (03) :033014-1
[8]   RADIATIVE DECAY SIGMA+-]P-GAMMA IN QUANTUM CHROMODYNAMICS [J].
BALITSKY, II ;
BRAUN, VM ;
KOLESNICHENKO, AV .
NUCLEAR PHYSICS B, 1989, 312 (03) :509-550
[9]   EVOLUTION-EQUATIONS FOR QCD STRING-OPERATORS [J].
BALITSKY, II ;
BRAUN, VM .
NUCLEAR PHYSICS B, 1989, 311 (03) :541-584
[10]   Theoretical update of pseudoscalar meson distribution amplitudes of higher twist: the nonsinglet case [J].
Ball, P .
JOURNAL OF HIGH ENERGY PHYSICS, 1999, (01) :XX-19