The molecular basis of zinc homeostasis in cereals

被引:19
作者
Amini, Sahand [1 ]
Arsova, Borjana [2 ]
Hanikenne, Marc [1 ]
机构
[1] Univ Liege, InBioS PhytoSyst Translat Plant Biol, Liege, Belgium
[2] Forschungszentrum, Inst Bio & Geowissensch IBG, IBG 2 Plant Sci, Root Dynam Grp, Julich, Germany
关键词
barley; chelation; dicot; Fe uptake strategy; monocot; rice; transport; uptake; wheat; zinc; HEAVY-METAL ATPASE; NICOTIANAMINE SYNTHASE GENES; BZIP TRANSCRIPTION FACTORS; DIFFERENT GROWTH-STAGES; TO-SHOOT TRANSLOCATION; ORYZA-SATIVA L; ARABIDOPSIS-THALIANA; IRON-DEFICIENCY; ZN-DEFICIENCY; VACUOLAR MEMBRANE;
D O I
10.1111/pce.14257
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants require zinc (Zn) as an essential cofactor for diverse molecular, cellular and physiological functions. Zn is crucial for crop yield, but is one of the most limiting micronutrients in soils. Grasses like rice, wheat, maize and barley are crucial sources of food and nutrients for humans. Zn deficiency in these species therefore not only reduces annual yield but also directly results in Zn malnutrition of more than two billion people in the world. There has been good progress in understanding Zn homeostasis and Zn deficiency mechanisms in plants. However, our current knowledge of monocots, including grasses, remains insufficient. In this review, we provide a summary of our knowledge of molecular Zn homeostasis mechanisms in monocots, with a focus on important cereal crops. We additionally highlight divergences in Zn homeostasis of monocots and the dicot model Arabidopsis thaliana, as well as important gaps in our knowledge that need to be addressed in future research on Zn homeostasis in cereal monocots.
引用
收藏
页码:1339 / 1361
页数:23
相关论文
共 242 条
[31]   Biofortification and Localization of Zinc in Wheat Grain [J].
Cakmak, I. ;
Kalayci, M. ;
Kaya, Y. ;
Torun, A. A. ;
Aydin, N. ;
Wang, Y. ;
Arisoy, Z. ;
Erdem, H. ;
Yazici, A. ;
Gokmen, O. ;
Ozturk, L. ;
Horst, W. J. .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2010, 58 (16) :9092-9102
[32]   Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency [J].
Cakmak, I ;
Sari, N ;
Marschner, H ;
Ekiz, H ;
Kalayci, M ;
Yilmaz, A ;
Braun, HJ .
PLANT AND SOIL, 1996, 180 (02) :183-189
[33]  
Cakmak I., 2004, INT FERT SOC C CAMBR
[34]   Zinc Homeostasis and isotopic fractionation in plants: a review [J].
Caldelas, Cristina ;
Weiss, Dominik Jakob .
PLANT AND SOIL, 2017, 411 (1-2) :17-46
[35]   Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants [J].
Castro, Pedro Humberto ;
Lilay, Grmay H. ;
Munoz-Merida, Antonio ;
Schjoerring, Jan K. ;
Azevedo, Herlander ;
Assuncao, Ana G. L. .
SCIENTIFIC REPORTS, 2017, 7
[36]   Characterization of the Root Transcriptome for Iron and Zinc Homeostasis-related Genes in Indica rice (Oryza sativa L) [J].
Chandel, G. ;
Banerjee, S. ;
Vasconcelos, M. ;
Grusak, M. A. .
JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2010, 19 (02) :145-152
[37]  
Chaney RL., 1993, DEV PLANT SOIL SCI, P135, DOI DOI 10.1007/978-94-011-0878-2_10
[38]   OsNRAMP1transporter contributes to cadmium and manganese uptake in rice [J].
Chang, Jia-Dong ;
Huang, Sheng ;
Yamaji, Naoki ;
Zhang, Wenwen ;
Ma, Jian Feng ;
Zhao, Fang-Jie .
PLANT CELL AND ENVIRONMENT, 2020, 43 (10) :2476-2491
[39]   Genome-Wide Association Studies Identify Heavy Metal ATPase3 as the Primary Determinant of Natural Variation in Leaf Cadmium in Arabidopsis thaliana [J].
Chao, Dai-Yin ;
Silva, Adriano ;
Baxter, Ivan ;
Huang, Yu S. ;
Nordborg, Magnus ;
Danku, John ;
Lahner, Brett ;
Yakubova, Elena ;
Salt, David E. .
PLOS GENETICS, 2012, 8 (09)
[40]   Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives [J].
Charlier, Jean-Benoit ;
Polese, Catherine ;
Nouet, Cecile ;
Carnol, Monique ;
Bosman, Bernard ;
Kraemer, Ute ;
Motte, Patrick ;
Hanikenne, Marc .
JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (13) :3865-3878