Holocene Aeolian Activity Recorded by Mountain Paleosols, Gonghe Basin, Northeast Qinghai-Tibet Plateau

被引:6
|
作者
Xu, Chunxia [1 ,2 ]
E, Chongyi [1 ,2 ,3 ,4 ]
Shi, Yunkun [1 ,2 ]
Zhang, Jing [1 ,2 ]
Sun, Manping [1 ,2 ]
Zhang, Zhaokang [1 ,2 ]
Zeng, Yongxin [1 ,2 ]
机构
[1] Qinghai Normal Univ, Minist Educ, Key Lab Tibetan Plateau Land Surface Proc & Ecol, Xining, Peoples R China
[2] Qinghai Normal Univ, Coll Geog Sci, Qinghai Prov Key Lab Phys Geog & Environm Proc, Xining, Peoples R China
[3] Peoples Govt Qinghai Prov, Acad Plateau Sci & Sustainabil, Xining, Peoples R China
[4] Beijing Normal Univ, Xining, Peoples R China
基金
中国国家自然科学基金; 英国科研创新办公室;
关键词
aeolian activity; high resolution; OSL dating; holocene climate; human activities; CLIMATE-CHANGE; LAKE; QUARTZ; LUMINESCENCE; OSL; VARIABILITY; VEGETATION; SEQUENCES; MOISTURE;
D O I
10.3389/feart.2022.832993
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Gonghe Basin (GHB) on the northeastern Qinghai-Tibet Plateau (NE-QTP) is sensitive to climatic change due to the interplay of the Asian summer monsoon and the westerlies. Extensive aeolian sediments in the basin represent important archives of regional environmental evolution. However, the paleosol development timing is still not clear because of limited number of optically stimulated luminescence (OSL) sampling and dating, which restricts our understanding of past aeolian activities during the Holocene in GHB. In this study, a loess-paleosol section, Najiao (NJ), from the southeastern margin of GHB was investigated. Eighteen OSL samples were obtained from the 400-cm section in order to construct a high-resolution chronological framework. Paleoenvironmental proxies including grain size distribution (GS), magnetic susceptibility (MS), total organic carbon (TOC), and geochemical elements were measured to reconstruct the Holocene aeolian activity. Results show a successive accumulation from Early to Middle Holocene at NJ section, but a c. 3 ka sedimentary hiatus is found between c. 5 and 1.5 ka. Paleosol ages are constrained by high-resolution OSL ages which are from c. 7-5 ka. Consistent with previous studies, strong aeolian activities occurred in GHB during the Early Holocene (c. 13-9 ka), indicating dry climate conditions. Initiation of pedogenesis was at c. 9 ka, and the intensified soil development and lowest aeolian activity were between c. 7 and 5 ka. The increased sand content after c. 1.5 ka indicates enhanced human activities in the interior of GHB in the Late Holocene.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Late Quaternary aeolian activity in Gonghe Basin, northeastern Qinghai-Tibetan Plateau, China
    Qiang, Mingrui
    Chen, Fahu
    Song, Lei
    Liu, Xingxing
    Li, Mingzhi
    Wang, Qin
    QUATERNARY RESEARCH, 2013, 79 (03) : 403 - 412
  • [2] Evidence of Holocene millennial-scale climatic change from Gonghe Basin peat deposit, northeastern Qinghai-Tibet Plateau
    Liu, Bing
    Jin, Heling
    Sun, Zhong
    Miao, Yunfa
    Su, Zhizhu
    Zhang, Caixia
    JOURNAL OF ARID ENVIRONMENTS, 2014, 106 : 1 - 10
  • [3] Quantification of Middle to Late Holocene precipitation in the Gonghe Basin, northeastern Qinghai-Tibetan Plateau, from the geochemistry of aeolian surface soil
    Liu, Bing
    Ge, Jianhui
    Li, Sen
    Du, Heqiang
    Liang, Xiaolei
    Jin, Heling
    Jin, Jianhui
    Zhao, Hui
    Chen, Fahu
    QUATERNARY SCIENCE REVIEWS, 2024, 343
  • [4] Precipitation change and its effects on prehistorical human activities in the Gonghe Basin, Northeastern Qinghai-Tibet Plateau during middle and late Holocene
    Hou, Xiaoqing
    Hou, Guangliang
    Wang, Fangfang
    Wang, Qingbo
    INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND ENVIRONMENTAL PROTECTION (EEEP2017), 2018, 121
  • [5] Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China
    Cheng, Guodong
    Jin, Huijun
    HYDROGEOLOGY JOURNAL, 2013, 21 (01) : 5 - 23
  • [6] Geomorphic features of Quaternary glaciation in the Taniantaweng Mountain, on the southeastern Qinghai-Tibet Plateau
    Zhang Wei
    Chai Le
    Ian, S. Evans
    Liu Liang
    Li Ya-peng
    Qiao Jing-ru
    Tang Qian-yu
    Sun Bo
    JOURNAL OF MOUNTAIN SCIENCE, 2019, 16 (02) : 256 - 274
  • [7] Holocene climatic change revealed by aeolian deposits from the Gonghe Basin, northeastern Qinghai-Tibetan Plateau
    Liu, Bing
    Jin, Heling
    Sun, Liangying
    Sun, Zhong
    Su, Zhizhu
    Zhang, Caixia
    QUATERNARY INTERNATIONAL, 2013, 296 : 231 - 240
  • [8] Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications
    Qiang, Mingrui
    Jin, Yanxiang
    Liu, Xingxing
    Song, Lei
    Li, Hao
    Li, Fengshan
    Chen, Fahu
    QUATERNARY SCIENCE REVIEWS, 2016, 132 : 57 - 73
  • [9] The developmental trend and influencing factors of aeolian desertification in the Zoige Basin, eastern Qinghai-Tibet Plateau
    Hu, Guangyin
    Dong, Zhibao
    Lu, Junfeng
    Yan, Changzhen
    AEOLIAN RESEARCH, 2015, 19 : 275 - 281
  • [10] Characteristics of stable isotopes and hydrochemistry of river water in the Qinghai Lake Basin, northeast Qinghai-Tibet Plateau, China
    Cui, Bu-Li
    Li, Xiao-Yan
    ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (08) : 4251 - 4263