Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage

被引:73
|
作者
Harikrishnan, S. [1 ]
Hussain, S. Imran [2 ]
Devaraju, A. [1 ]
Sivasamy, P. [1 ]
Kalaiselvam, S. [2 ]
机构
[1] Adhi Coll Engn & Technol, Dr APJ Abdul Kalam Ctr Adv Res, Dept Mech Engn, Sankarapuram 631605, Tamil Nadu, India
[2] Anna Univ, Dept Appl Sci & Technol, Chennai 600025, Tamil Nadu, India
关键词
Melting; NEPCM; Thermal conductivity; Solidification; Nanoparticles; THERMAL-CONDUCTIVITY; HEAT-TRANSFER; NANOFLUIDS; NANOPARTICLES; AGGREGATION; COMPOSITES; BEHAVIOR; NEPCM; WATER; PCM;
D O I
10.1007/s12206-017-0938-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the thermal performance of a newly prepared Nano-enhanced phase change material (NEPCM), constituting SiO2 Nanoparticles (NPs) in myristic acid. SiO2 NPs with mass fractions of 0.2 wt%, 0.5 wt%, 0.8 wt% and 1.0 wt% were suspended in myristic acid, which serves as the base Phase change material (PCM) separately, to determine the maximum enhancement of thermal conductivity. The size and morphology of the as synthesized SiO2 NPs were studied by Field emission scanning electron microscopy (FESEM). The phase change properties of NEPCMs were assessed with the help of Differential scanning calorimetry (DSC). The thermal conductivity enhancement of NEPCMs was measured using a Laser flash analyzer (LFA). Results clearly indicate that the duration of the melting and solidification processes of NEPCMs decreased compared to that of the base PCM. Thus, the newly prepared NEPCM is a potential candidate for harvesting solar energy for low-temperature heating systems.
引用
收藏
页码:4903 / 4910
页数:8
相关论文
共 50 条
  • [31] Thermal Performance Enhancement of CuO-Paraffin Nano-Enhanced Phase Change Material
    Singh S.
    Verma S.
    Kumar R.
    Gupta G.
    Pati P.R.
    Sharma A.
    International Journal of Vehicle Structures and Systems, 2022, 14 (03): : 411 - 416
  • [32] Experimental investigation of thermal energy storage in shell-and-multi-tube unit with nano-enhanced phase change material
    Fabrykiewicz, Maciej
    Cieslinski, Janusz T.
    APPLIED THERMAL ENGINEERING, 2024, 246
  • [33] Simulation and performance analysis of a cooling energy storage system based on encapsulated nano-enhanced phase change materials
    Ghojavand, Fateme
    Baniasadi, Ehsan
    Afshari, Ebraim
    Genceli, Hadi
    ENERGY STORAGE, 2023, 5 (04)
  • [34] Numerical study of solidification of a nano-enhanced phase change material (NEPCM) in a thermal storage system
    S. Kashani
    A. A. Ranjbar
    M. M. Madani
    M. Mastiani
    H. Jalaly
    Journal of Applied Mechanics and Technical Physics, 2013, 54 : 702 - 712
  • [35] Stable nano-enhanced phase change material emulsions of natural surfactant and silica nanoparticles for thermal energy storage applications
    Singh, Alpana
    Sharma, Tushar
    Abdullah, Mahmood M. S.
    Vishal, Vikram
    APPLIED THERMAL ENGINEERING, 2025, 270
  • [36] Phase change heat transfer and energy storage in a wavy-tube thermal storage unit filled with a nano-enhanced phase change material and metal foams
    Ghalambaz, Mohammad
    Melaibari, Ammar A.
    Chamkha, Ali J.
    Younis, Obai
    Sheremet, Mikhail
    JOURNAL OF ENERGY STORAGE, 2022, 54
  • [37] Numerical analysis of polyethylene based nano-enhanced phase change material in cylindrical storage system
    Sheikh M.I.A.R.
    Gumtapure V.
    Ahammed M.E.
    International Journal of Ambient Energy, 2024, 45 (01)
  • [38] Numerical study of solidification of a nano-enhanced phase change material (NEPCM) in a thermal storage system
    Kashani, S.
    Ranjbar, A. A.
    Madani, M. M.
    Mastiani, M.
    Jalaly, H.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2013, 54 (05) : 702 - 712
  • [39] Simulation of a Fast-Charging Porous Thermal Energy Storage System Saturated with a Nano-Enhanced Phase Change Material
    Ghalambaz, Mohammad
    Mehryan, S. A. M.
    Shirivand, Hassan
    Shalbafi, Farshid
    Younis, Obai
    Inthavong, Kiao
    Ahmadi, Goodarz
    Talebizadehsardari, Pouyan
    ENERGIES, 2021, 14 (06)
  • [40] Performance investigation on flat plate solar water collector using a hybrid nano-enhanced phase change material (PCM)
    Bharathiraja, R.
    Ramkumar, T.
    Karthick, L.
    Mohanraj, M.
    JOURNAL OF ENERGY STORAGE, 2024, 86