Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage

被引:75
作者
Harikrishnan, S. [1 ]
Hussain, S. Imran [2 ]
Devaraju, A. [1 ]
Sivasamy, P. [1 ]
Kalaiselvam, S. [2 ]
机构
[1] Adhi Coll Engn & Technol, Dr APJ Abdul Kalam Ctr Adv Res, Dept Mech Engn, Sankarapuram 631605, Tamil Nadu, India
[2] Anna Univ, Dept Appl Sci & Technol, Chennai 600025, Tamil Nadu, India
关键词
Melting; NEPCM; Thermal conductivity; Solidification; Nanoparticles; THERMAL-CONDUCTIVITY; HEAT-TRANSFER; NANOFLUIDS; NANOPARTICLES; AGGREGATION; COMPOSITES; BEHAVIOR; NEPCM; WATER; PCM;
D O I
10.1007/s12206-017-0938-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the thermal performance of a newly prepared Nano-enhanced phase change material (NEPCM), constituting SiO2 Nanoparticles (NPs) in myristic acid. SiO2 NPs with mass fractions of 0.2 wt%, 0.5 wt%, 0.8 wt% and 1.0 wt% were suspended in myristic acid, which serves as the base Phase change material (PCM) separately, to determine the maximum enhancement of thermal conductivity. The size and morphology of the as synthesized SiO2 NPs were studied by Field emission scanning electron microscopy (FESEM). The phase change properties of NEPCMs were assessed with the help of Differential scanning calorimetry (DSC). The thermal conductivity enhancement of NEPCMs was measured using a Laser flash analyzer (LFA). Results clearly indicate that the duration of the melting and solidification processes of NEPCMs decreased compared to that of the base PCM. Thus, the newly prepared NEPCM is a potential candidate for harvesting solar energy for low-temperature heating systems.
引用
收藏
页码:4903 / 4910
页数:8
相关论文
共 34 条
[1]  
Chieruzzi M., 2016, INTELLIGENT NANOMATE
[2]   A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage [J].
Chieruzzi, Manila ;
Miliozzi, Adio ;
Crescenzi, Tommaso ;
Torre, Luigi ;
Kenny, Jose M. .
NANOSCALE RESEARCH LETTERS, 2015, 10
[3]   Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids [J].
Evans, William ;
Prasher, Ravi ;
Fish, Jacob ;
Meakin, Paul ;
Phelan, Patrick ;
Keblinski, Pawel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (5-6) :1431-1438
[4]   Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials [J].
Fang, Guiyin ;
Li, Hui ;
Chen, Zhi ;
Liu, Xu .
ENERGY, 2010, 35 (12) :4622-4626
[5]   A review on phase change energy storage: materials and applications [J].
Farid, MM ;
Khudhair, AM ;
Razack, SAK ;
Al-Hallaj, S .
ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (9-10) :1597-1615
[6]   Cyclic heat transfer in a novel storage unit of multiple phase change materials [J].
Gong, ZX ;
Mujumdar, AS .
APPLIED THERMAL ENGINEERING, 1996, 16 (10) :807-815
[7]   Preparation and thermal energy storage behaviour of stearic acid-TiO2 nanofluids as a phase change material for solar heating systems [J].
Harikrishnan, S. ;
Magesh, S. ;
Kalaiselvam, S. .
THERMOCHIMICA ACTA, 2013, 565 :137-145
[8]   Preparation and Thermophysical Properties of Water-Glycerol Mixture-Based CuO Nanofluids as PCM for Cooling Applications [J].
Harikrishnan, S. ;
Roseline, A. Ameelia ;
Kalaiselvam, S. .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2013, 12 (04) :629-635
[9]   Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material [J].
Harikrishnan, S. ;
Kalaiselvam, S. .
THERMOCHIMICA ACTA, 2012, 533 :46-55
[10]   Experimental study on CuO nanoparticles in distilled water and its effect on heat transfer on a vertical surface [J].
Hegde, Ramakrishna N. ;
Rao, Srikanth S. ;
Reddy, R. P. .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2011, 25 (11) :2927-2934