Atomic-scale friction control by vibration using friction force microscope

被引:8
作者
Guo, Yi [1 ]
Wang, Zheng [1 ]
Qu, Zhihua [2 ]
Braiman, Yehuda [3 ,4 ]
机构
[1] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
[2] Univ Cent Florida, Sch Elect Engn & Comp Sci, Orlando, FL 32816 USA
[3] Oak Ridge Natl Lab, Ctr Engn Sci Adv Res, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[4] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
Nonlinear control; Friction; Vibration; Nano-scale systems; Friction force microscope; NONLINEAR-SYSTEMS; SLIDING FRICTION; DYNAMICS; NANOTRIBOLOGY; DITHER; MODEL;
D O I
10.1016/j.conengprac.2011.07.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Manipulation of friction at the nanoscale has been traditionally approached by chemical means (lubrication). Recent friction force microscopy (FFM) experiments demonstrated that it can be done mechanically by applying vibration to accessible elements of the system. This paper provides analytic understanding on why vibration can reduce friction based on a 1D model imitating the FFM tip moving on a substrate. Open-loop stability is first studied, and a feedback vibration control is then designed using the accessible variable. Comparing to the open-loop system, friction force is significantly reduced in the closed-loop system. Numerical simulations show satisfactory performances. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1387 / 1397
页数:11
相关论文
共 48 条
[1]   Evidence for contact delocalization in atomic scale friction [J].
Abel, D. G. ;
Krylov, S. Yu. ;
Frenken, J. W. M. .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[2]  
[Anonymous], 2000, VIBRATIONAL MECH NON, DOI DOI 10.1142/4116
[3]   VIBRATIONAL CONTROL OF NONLINEAR-SYSTEMS - VIBRATIONAL STABILIZABILITY [J].
BELLMAN, RE ;
BENTSMAN, J ;
MEERKOV, SM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (08) :710-716
[4]   VIBRATIONAL CONTROL OF A CLASS OF NONLINEAR-SYSTEMS BY NONLINEAR MULTIPLICATIVE VIBRATIONS [J].
BENTSMAN, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (08) :711-716
[5]  
Bogoliubov N.N., 1961, Asymptotic Methods in the Theory of Non-linear Oscillations
[6]   Nonlinear friction in the periodic stick-slip motion of coupled oscillators [J].
Braiman, Y ;
Family, F ;
Hentschel, HGE .
PHYSICAL REVIEW B, 1997, 55 (08) :5491-5504
[7]   Control of friction at the nanoscale [J].
Braiman, Y ;
Barhen, J ;
Protopopescu, V .
PHYSICAL REVIEW LETTERS, 2003, 90 (09) :4
[8]   Nanotribology: Microscopic mechanisms of friction [J].
Braun, OM ;
Naumovets, AG .
SURFACE SCIENCE REPORTS, 2006, 60 (6-7) :79-158
[9]   Role of long jumps in surface diffusion [J].
Braun, OM ;
Ferrando, R .
PHYSICAL REVIEW E, 2002, 65 (06)
[10]   Averaging and vibrational control of mechanical systems [J].
Bullo, F .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (02) :542-562