Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces

被引:319
作者
Takahashi, Wataru [1 ]
Takeuchi, Yukio [1 ]
Kubota, Rieko [2 ]
机构
[1] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
[2] Yokohama Natl Univ, Grad Sch Engn, Div Phys Elect & Comp Engn, Yokohama, Kanagawa 2408501, Japan
关键词
nonexpansive mapping; fixed point; maximal monotone operator; one-parameter nonexpansive semigroup; hybrid method;
D O I
10.1016/j.jmaa.2007.09.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a strong convergence theorem by the hybrid method for a family of nonexpansive mappings which generalizes Nakajo and Takahashi's theorems [K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372-379], simultaneously. Furthermore, we obtain another strong convergence theorem for the family of nonexpansive mappings by a hybrid method which is different from Nakajo and Takahashi. Using this theorem, we get some new results for a single nonexpansive mapping or a family of nonexpansive mappings in a Hilbert space. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:276 / 286
页数:11
相关论文
共 16 条
[1]  
BAILLON JB, 1976, HOUSTON J MATH, V2, P5
[2]  
BREZIS H, 1973, MATH STUDIES, V6, P5
[3]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[4]   Approximating solutions of maximal monotone operators in Hilbert spaces [J].
Kamimura, S ;
Takahashi, W .
JOURNAL OF APPROXIMATION THEORY, 2000, 106 (02) :226-240
[5]   MEAN VALUE METHODS IN ITERATION [J].
MANN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :506-510
[6]  
Nakajo K, 2007, J NONLINEAR CONVEX A, V8, P11
[7]   Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups [J].
Nakajo, K ;
Takahashi, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) :372-379
[9]   CHARACTERIZATION OF SUBDIFFERENTIALS OF CONVEX FUNCTIONS [J].
ROCKAFEL.RT .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 17 (03) :497-&
[10]   ON MAXIMAL MONOTONICITY OF SUBDIFFERENTIAL MAPPINGS [J].
ROCKAFELLAR, RT .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 33 (01) :209-+