Controllable and fast synthesis of bilayer graphene by chemical vapor deposition on copper foil using a cold wall reactor

被引:14
作者
Mu, Wei [1 ,2 ]
Fu, Yifeng [2 ,3 ]
Sun, Shuangxi [1 ,2 ]
Edwards, Michael [2 ]
Ye, Lilei [3 ]
Jeppson, Kjell [1 ,2 ]
Liu, Johan [1 ,2 ]
机构
[1] Shanghai Univ, Sch Mech Engn & Automat, SMIT Ctr, Inst NanoMicroEnergy, Jiading Campus, Shanghai 201800, Peoples R China
[2] Chalmers, Dept Microtechnol & Nanosci, Elect Mat & Syst Lab, S-41296 Gothenburg, Sweden
[3] SHT Smart High Tech AB, Aschebergsgatan 46, S-41133 Gothenburg, Sweden
基金
中国国家自然科学基金;
关键词
Bilayer graphene; Cold wall CVD; Controllable and fast; Copper; Nucleation activity; HIGH-QUALITY MONOLAYER; LARGE-AREA; GROWTH; CU; FILMS; TEMPERATURE; MECHANISM; TRANSPORT; CRYSTALS; HYDROGEN;
D O I
10.1016/j.cej.2016.05.144
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bilayer graphene is attractive for digital device applications due to the appearance of a bandgap under application of an electrical displacement field. Controllable and fast synthesis of bilayer graphene on copper by chemical vapor deposition is considered a crucial process from the perspective of industrial applications. Here, a systematic investigation of the influence of process parameters on the growth of bilayer graphene by chemical vapor deposition in a low pressure cold wall reactor is presented. In this study, the initial process stages have been of particular interest. We have found that the influence of the hydrogen partial pressure on synthesis is completely the opposite from that found for traditional tubular quartz CVD. H-2/CH4 ratio was also found to effectively influence the properties of the synthesized bilayer graphene in terms of its atomic structure, whether it be AB-stacked or mis-oriented. Different pre treatments of the copper foil, in combination with different annealing processes, were used to investigate the nucleation process with the aim of improving the controllability of the synthesis process. Based on an analysis of the nucleation activity, adsorption-diffusion and gas-phase penetration were employed to illustrate the synthesis mechanism of bilayer graphene on copper foil. After optimization of the synthesis process, large areas, up to 90% of a copper foil, were covered by bilayer graphene within 15 min. The total process time is only 45 min, including temperature ramp-up and cool-down by using a low pressure cold wall CVD reactor. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 39 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[2]   Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device [J].
Banerjee, Sanjay K. ;
Register, Leonard F. ;
Tutuc, Emanuel ;
Reddy, Dharmendar ;
MacDonald, Allan H. .
IEEE ELECTRON DEVICE LETTERS, 2009, 30 (02) :158-160
[3]   High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition [J].
Bointon, Thomas H. ;
Barnes, Matthew D. ;
Russo, Saverio ;
Craciun, Monica F. .
ADVANCED MATERIALS, 2015, 27 (28) :4200-4206
[4]   Temperature dependence of the Raman spectra of graphene and graphene multilayers [J].
Calizo, I. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
NANO LETTERS, 2007, 7 (09) :2645-2649
[5]   Direct preparation of high quality graphene on dielectric substrates [J].
Chen, Xin ;
Wu, Bin ;
Liu, Yunqi .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (08) :2057-2074
[6]   Towards high quality CVD graphene growth and transfer [J].
Deokar, G. ;
Avila, J. ;
Razado-Colambo, I. ;
Codron, J. -L. ;
Boyaval, C. ;
Galopin, E. ;
Asensio, M. -C. ;
Vignaud, D. .
CARBON, 2015, 89 :82-92
[7]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems [J].
Ferrari, Andrea C. ;
Bonaccorso, Francesco ;
Fal'ko, Vladimir ;
Novoselov, Konstantin S. ;
Roche, Stephan ;
Boggild, Peter ;
Borini, Stefano ;
Koppens, Frank H. L. ;
Palermo, Vincenzo ;
Pugno, Nicola ;
Garrido, Jose A. ;
Sordan, Roman ;
Bianco, Alberto ;
Ballerini, Laura ;
Prato, Maurizio ;
Lidorikis, Elefterios ;
Kivioja, Jani ;
Marinelli, Claudio ;
Ryhaenen, Tapani ;
Morpurgo, Alberto ;
Coleman, Jonathan N. ;
Nicolosi, Valeria ;
Colombo, Luigi ;
Fert, Albert ;
Garcia-Hernandez, Mar ;
Bachtold, Adrian ;
Schneider, Gregory F. ;
Guinea, Francisco ;
Dekker, Cees ;
Barbone, Matteo ;
Sun, Zhipei ;
Galiotis, Costas ;
Grigorenko, Alexander N. ;
Konstantatos, Gerasimos ;
Kis, Andras ;
Katsnelson, Mikhail ;
Vandersypen, Lieven ;
Loiseau, Annick ;
Morandi, Vittorio ;
Neumaier, Daniel ;
Treossi, Emanuele ;
Pellegrini, Vittorio ;
Polini, Marco ;
Tredicucci, Alessandro ;
Williams, Gareth M. ;
Hong, Byung Hee ;
Ahn, Jong-Hyun ;
Kim, Jong Min ;
Zirath, Herbert ;
van Wees, Bart J. .
NANOSCALE, 2015, 7 (11) :4598-4810
[10]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)