Image semantic segmentation based on improved DeepLabv3+network and superpixel edge optimization

被引:8
作者
Liu, Guohua [1 ,2 ]
Chai, Zhipeng [1 ]
机构
[1] Tiangong Univ, Sch Mech Engn, Tianjin, Peoples R China
[2] Tiangong Univ, Tianjin Key Lab Adv Mechatron Equipment Technol, Tianjin, Peoples R China
关键词
image semantic segmentation; DeepLabv3+; superpixel edge optimization; group normalization; mutual information; relative entropy; MUTUAL-INFORMATION;
D O I
10.1117/1.JEI.31.1.013011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
-Image semantic segmentation is a fundamental problem in the field of computer vision. Although the existing semantic segmentation model based on fully convolutional neural network continuously optimizes the segmentation effect, the inherent spatial invariance of the network still leads to cause the loss of object edge details. Moreover, most models use the pixel-by-pixel loss to optimize the target, and the dependencies between pixels are ignored. When facing objects with smaller spatial structures in the image, the segmentation result is not satisfactory. Based on the theory of relative entropy and mutual information, we propose an overall objective loss function that integrates pixel similarity and image structure similarity. It can better pay attention to the structure and detail information of small objects in space by modeling the dependency relationship between pixels. We use the DeepLabv3+ network based on group normalization, with the improved ResNet50 as the backbone. After that, considering the particular advantages of superpixel segmentation for object edges, we propose a superpixel edge optimization algorithm, which combines pixel-level semantic features and superpixel-level regional information to obtain the semantic segmentation results after edge optimization. Experiments on PASCAL VOC 2012 and cityscapes datasets show that the proposed method improves the performance of semantic segmentation and shows better results in small target structures and object edge details. (C) 2022 SPIE and IS&T
引用
收藏
页数:24
相关论文
共 33 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Convolutional Neural Network Based Image Segmentation: A Review [J].
Ajmal, Hina ;
Rehman, Saad ;
Farooq, Umar ;
Ain, Qurrat U. ;
Riaz, Farhan ;
Hassan, Ali .
PATTERN RECOGNITION AND TRACKING XXIX, 2018, 10649
[3]  
[Anonymous], 2016, ICLR
[4]  
[Anonymous], 2015, P IEEE C COMP VIS PA
[5]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[6]  
Berg A.C., 2015, Parsenet: Looking wider to see better
[7]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[8]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[9]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[10]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223