Compositions of Functions and Permutations Specified by Minimal Reaction Systems

被引:6
作者
Teh, Wen Chean [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, Usm 11800, Malaysia
关键词
Biochemical reaction model; natural computing; minimal reaction system; generating function; symmetric group; SEQUENCES; DURATION;
D O I
10.1142/S0129054118500272
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies mathematical properties of reaction systems that were introduced by Ehrenfeucht and Rozenberg as computational models inspired by biochemical reaction in the living cells. In particular, we continue the study on the generative power of functions specified by minimal reaction systems under composition initiated by Salomaa. Allowing degenerate reaction systems, functions specified by minimal reaction systems over a quarternary alphabet that are permutations generate the alternating group on the power set of the background set.
引用
收藏
页码:1165 / 1179
页数:15
相关论文
共 19 条
[1]  
Azimi S., 2017, THEORET COMPUT SCI
[2]  
Ehrenfeucht A, 2007, FUND INFORM, V75, P263
[3]  
Ehrenfeucht Andrzej, 2012, Transactions on Computational Systems Biology XIV. Special Issue on Computational Models for Cell Processes, P102, DOI 10.1007/978-3-642-35524-0_5
[4]  
Ehrenfeucht A, 2012, COMPUTABLE UNIVERSE, P207
[5]  
Ehrenfeucht A, 2012, QUALITATIVE QUANTITA
[6]   FUNCTIONS DEFINED BY REACTION SYSTEMS [J].
Ehrenfeucht, Andrzej ;
Main, Michael ;
Rozenberg, Grzegorz .
INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2011, 22 (01) :167-178
[7]  
Manzoni L, 2014, INT J FOUND COMPUT S, V25, P441, DOI [10.1142/S012905411440005X, 10.1142/S01290541144005X]
[8]  
Piccard S., 1946, BASES GROUPE SYMETRI
[9]   Composition sequences for functions over a finite domain [J].
Salomaa, A .
THEORETICAL COMPUTER SCIENCE, 2003, 292 (01) :263-281
[10]  
Salomaa A., 2014, J AUTOM LANG COMB, V19, P279