From the Boltzmann equation to the Stokes-Fourier system in a bounded domain

被引:93
作者
Masmoudi, N
Saint-Raymond, L
机构
[1] Courant Inst, New York, NY 10012 USA
[2] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
关键词
D O I
10.1002/cpa.10095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the renormalized solutions of the Boltzmann equation considered in a bounded domain with different types of (kinetic) boundary conditions converge to the Stokes-Fourier system with different types of (fluid) boundary conditions when the main free path goes to zero. This extends the work of F. Golse and D. Levermore [9] to the case of a bounded domain. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:1263 / 1293
页数:31
相关论文
共 20 条
[1]  
[Anonymous], 1988, ANAL MATH CALCUL NUM
[2]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[3]   FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS-II CONVERGENCE PROOFS FOR THE BOLTZMANN-EQUATION [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (05) :667-753
[4]   The acoustic limit for the Boltzmann equation [J].
Bardos, C ;
Golse, F ;
Levermore, CD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 153 (03) :177-204
[5]  
BARDOS C, 2000, UNPUB KINETIC EQUATI, V106
[6]  
Cercignani C., 1994, MATH THEORY DILUTE G, V106
[7]  
DARROZES JS, 1966, CR HEBD ACAD SCI, V262, P368
[8]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[9]   Stokes-Fourier and acoustic limits for the Boltzmann equation: Convergence proofs [J].
Golse, F ;
Levermore, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (03) :336-393
[10]  
GOLSE F, 2001, IN PRESS INVENT MATH