Highly Sensitive Magnetic Sensor Based on Anisotropic Magnetoresistance Effect

被引:41
作者
Wang, Chenying [1 ,2 ,3 ]
Su, Wei [1 ,2 ]
Hu, Zhongqiang [1 ,2 ]
Pu, Jiangtao [1 ,2 ]
Guan, Mengmeng [1 ,2 ]
Peng, Bin [1 ,2 ]
Li, Lei [3 ]
Ren, Wei [1 ,2 ]
Zhou, Ziyao [1 ,2 ]
Jiang, Zhuangde [3 ]
Liu, Ming [1 ,2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Elect Mat Res Lab, Key Lab,Minist Educ, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Int Ctr Dielect Res, Xian 710049, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Collaborat Innovat Ctr High End Mfg Equipment, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Anisotropic magnetoresistance (AMR) ratio; Hall bar; magnetic field sensor; Wheatstone bridge; LOCALIZATION; DETECTOR; FIELD; LAYER;
D O I
10.1109/TMAG.2018.2846758
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The magnetic field sensors based on anisotropic magnetoresistance (AMR) effect have been widely used in data storage, navigation, and medical diagnosis. However, the AMR effect of metal materials is relatively weak with an AMR ratio below 2%, which results in low voltage output. In order to improve the sensitivity of weak magnetic fields, we optimize the structure of the AMR sensor with a specific photolithographic process. We use two different designs of Hall bar and Wheatstone bridge with similar barber pole structures, and investigate the angular dependence as well as magnetic field dependence of AMR ratio and voltage output. With Wheatstone bridge, the magnetoresistance leads to a voltage output without dc components. The NiFe magnetic layer and the Au electrode are patterned into a highly conductive barber poles structure, and a high voltage output ratio of about 80% is obtained. At the same time, we achieve a high sensitivity of about 4.3 Oe(-1), which implies potential applications in AMR effect-based magnetic field sensors.
引用
收藏
页数:3
相关论文
共 23 条
[1]   Toward a universal memory [J].
Åkerman, J .
SCIENCE, 2005, 308 (5721) :508-510
[2]  
Andreev S, 2005, J OPTOELECTRON ADV M, V7, P199
[3]   Applications of real-time fMRI [J].
decharms, R. Christopher .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (09) :720-729
[4]  
Ding L., 2009, APPL PHYS LETT, V94
[5]   Magnetoelastic sensors for electronic article surveillance [J].
Herzer, Giselher .
SENSOR LETTERS, 2007, 5 (01) :259-262
[6]   Experimental study of a vehicle detector with an AMR sensor [J].
Kang, MH ;
Choi, BW ;
Koh, KC ;
Lee, JH ;
Park, GT .
SENSORS AND ACTUATORS A-PHYSICAL, 2005, 118 (02) :278-284
[7]   Light Weight and Flexible High-Performance Diagnostic Platform [J].
Karnaushenko, Daniil ;
Ibarlucea, Bergoi ;
Lee, Sanghun ;
Lin, Gungun ;
Baraban, Larysa ;
Pregl, Sebastian ;
Melzer, Michael ;
Makarov, Denys ;
Weber, Walter M. ;
Mikolajick, Thomas ;
Schmidt, Oliver G. ;
Cuniberti, Gianaurelio .
ADVANCED HEALTHCARE MATERIALS, 2015, 4 (10) :1517-1525
[8]  
Kim DH, 2011, NAT MATER, V10, P316, DOI [10.1038/nmat2971, 10.1038/NMAT2971]
[9]   Effect of a CoFeB layer on the anisotropic magnetoresistance of Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta films [J].
Li, Minghua ;
Shi, Hui ;
Dong, Yuegang ;
Ding, Lei ;
Han, Gang ;
Zhang, Yao ;
Liu, Ye ;
Yu, Guanghua .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 439 :17-21
[10]   A micro-fluxgate magnetic sensor using micromachined planar solenoid coils [J].
Liakopoulos, TM ;
Ahn, CH .
SENSORS AND ACTUATORS A-PHYSICAL, 1999, 77 (01) :66-72