Multiplicity solutions of a class fractional Schrodinger equations

被引:1
作者
Jia, Li-Jiang [1 ]
Ge, Bin [2 ]
Cui, Ying-Xin [2 ]
Sun, Liang-Liang [2 ]
机构
[1] Harbin Engn Univ, Sch Econ & Management, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Engn Univ, Dept Appl Math, Harbin 150001, Heilongjiang, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Fractional Laplacian; Variational methods; Nontrivial solution; WEAK SOLUTIONS; EXISTENCE; STATE;
D O I
10.1515/math-2017-0084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of nontrivial solutions to a class fractional Schr R odinger equations (-Delta)(s)u + V(x)u = lambda f(x, u) in R-N,R- where (-Delta)(s)u(x) = 2(epsilon -> 0) (lim) integral R-N\B-epsilon(X) u(x)-u(y)/vertical bar x-y vertical bar(N+2s) dy, x is an element of R-N is a fraction operetor and s is an element of (0, 1). By using variational methods, we prove this problem has at least two nontrivial solutions in a suitable weighted fractional Sobolev space.
引用
收藏
页码:1010 / 1023
页数:14
相关论文
共 26 条
[1]  
Bisci G. M, 2015, CALC VAR, V54, P1
[2]   Multiplicity results for elliptic fractional equations with subcritical term [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (04) :721-739
[3]  
Caffarelli, 2012, NONLINEAR PARTIAL DI, P37, DOI DOI 10.1007/978-3-642-25361-4_3
[4]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[5]   Regularity Results for Nonlocal Equations by Approximation [J].
Caffarelli, Luis ;
Silvestre, Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (01) :59-88
[6]   Regularity Theory for Fully Nonlinear Integro-Differential Equations [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (05) :597-638
[7]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[8]   Ground state solutions of asymptotically linear fractional Schrodinger equations [J].
Chang, Xiaojun .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
[9]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[10]   Infinitely many weak solutions for a fractional Schrodinger equation [J].
Dong, Wei ;
Xu, Jiafa ;
Wei, Zhongli .
BOUNDARY VALUE PROBLEMS, 2014, :1-14