Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers

被引:132
作者
Jahnke, Frank [1 ]
Gies, Christopher [1 ]
Assmann, Marc [2 ]
Bayer, Manfred [2 ]
Leymann, H. A. M. [3 ]
Foerster, Alexander [3 ]
Wiersig, Jan [3 ]
Schneider, Christian [4 ]
Kamp, Martin [4 ]
Hoefling, Sven [4 ,5 ]
机构
[1] Univ Bremen, Inst Theoret Phys, D-28334 Bremen, Germany
[2] Tech Univ Dortmund, Expt Phys 2, D-44221 Dortmund, Germany
[3] Univ Magdeburg, Inst Theoret Phys, D-39016 Magdeburg, Germany
[4] Univ Wurzburg, Tech Phys, D-97074 Wurzburg, Germany
[5] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
关键词
SEMICONDUCTOR MICROCAVITY; LASER; STATISTICS;
D O I
10.1038/ncomms11540
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Light is often characterized only by its classical properties, like intensity or coherence. When looking at its quantum properties, described by photon correlations, new information about the state of the matter generating the radiation can be revealed. In particular the difference between independent and entangled emitters, which is at the heart of quantum mechanics, can be made visible in the photon statistics of the emitted light. The well-studied phenomenon of superradiance occurs when quantum-mechanical correlations between the emitters are present. Notwithstanding, superradiance was previously demonstrated only in terms of classical light properties. Here, we provide the missing link between quantum correlations of the active material and photon correlations in the emitted radiation. We use the superradiance of quantum dots in a cavity-quantum electrodynamics laser to show a direct connection between superradiant pulse emission and distinctive changes in the photon correlation function. This directly demonstrates the importance of quantum-mechanical correlations and their transfer between carriers and photons in novel optoelectronic devices.
引用
收藏
页数:7
相关论文
共 31 条
[1]   Higher-Order Photon Bunching in a Semiconductor Microcavity [J].
Assmann, M. ;
Veit, F. ;
Bayer, M. ;
van der Poel, M. ;
Hvam, J. M. .
SCIENCE, 2009, 325 (5938) :297-300
[2]   Measuring the dynamics of second-order photon correlation functions inside a pulse with picosecond time resolution [J].
Assmann, Marc ;
Veit, Franziska ;
Tempel, Jean-Sebastian ;
Berstermann, Thorsten ;
Stolz, Heinrich ;
van der Poel, Mike ;
Hvam, Jorn M. ;
Bayer, Manfred .
OPTICS EXPRESS, 2010, 18 (19) :20229-20241
[3]  
Ates S., 2009, NAT PHOTONICS, V3
[4]   Few emitters in a cavity: from cooperative emission to individualization [J].
Auffeves, A. ;
Gerace, D. ;
Portolan, S. ;
Drezet, A. ;
Franca Santos, M. .
NEW JOURNAL OF PHYSICS, 2011, 13
[5]   Superbunching and Nonclassicality as new Hallmarks of Superradiance [J].
Bhatti, Daniel ;
von Zanthier, Joachim ;
Agarwal, Girish S. .
SCIENTIFIC REPORTS, 2015, 5
[6]   ANALYSIS OF SEMICONDUCTOR MICROCAVITY LASERS USING RATE-EQUATIONS [J].
BJORK, G ;
YAMAMOTO, Y .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (11) :2386-2396
[7]   A steady-state superradiant laser with less than one intracavity photon [J].
Bohnet, Justin G. ;
Chen, Zilong ;
Weiner, Joshua M. ;
Meiser, Dominic ;
Holland, Murray J. ;
Thompson, James K. .
NATURE, 2012, 484 (7392) :78-81
[8]   Coherent and collective quantum optical effects in mesoscopic systems [J].
Brandes, T .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 408 (5-6) :315-474
[9]   Emission properties of nanolasers during the transition to lasing [J].
Chow, Weng W. ;
Jahnke, Frank ;
Gies, Christopher .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e201-e201
[10]   Equation-of-motion technique for finite-size quantum-dot systems: Cluster expansion method [J].
Florian, Matthias ;
Gies, Christopher ;
Jahnke, Frank ;
Leymann, Heinrich A. M. ;
Wiersig, Jan .
PHYSICAL REVIEW B, 2013, 87 (16)