(G, s)-Transitive Graphs of Valency 7

被引:32
作者
Guo, Songtao [1 ]
Li, Yantao [2 ]
Hua, Xiaohui [3 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Henan, Peoples R China
[2] Beijing Union Univ, Coll Arts & Sci, Beijing 100091, Peoples R China
[3] Henan Normal Univ, Coll Mat & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
symmetric graph; s-transitive graph; (G; s)-transitive graph; S-TRANSITIVE GRAPHS; PROJECTIVE SUBORBITS; ARC TRANSITIVITY; ORDER;
D O I
10.1142/S100538671600047X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a finite simple undirected graph and G an automorphism group of X. If G is transitive on s-arcs but not on (s+1)-arcs then X is called (G,s)-transitive. Let X be a connected (G,s)-transitive graph of a prime valency p, and G(v) the vertex stabilizer of a vertex v is an element of V(X) in G. For the case p=3, the exact structure of G(v) has been determined by Djokovic and Miller in [Regular groups of automorphisms of cubic graphs, J. Combin. Theory (Ser. B) 29 (1980) 195 - 230]. For the case p=5, all the possibilities of G(v) have been given by Guo and Feng in [A note on pentavalent s-transitive graphs, Discrete Math.312 (2012) 2214 - 2216]. In this paper, we deal with the case p=7 and determine the exact structure of the vertex stabilizer G(v).
引用
收藏
页码:493 / 500
页数:8
相关论文
共 33 条
[1]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[2]  
Conway J. H., 1985, MATHBB ATLAS FINITE
[3]   REGULAR GROUPS OF AUTOMORPHISMS OF CUBIC GRAPHS [J].
DJOKOVIC, DZ ;
MILLER, GL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 29 (02) :195-230
[4]   ARC TRANSITIVITY IN GRAPHS-3 [J].
GARDINER, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (107) :313-323
[5]   ARC TRANSITIVITY IN GRAPHS .2. [J].
GARDINER, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1974, 25 (98) :163-167
[6]   ARC TRANSITIVITY IN GRAPHS [J].
GARDINER, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (95) :399-407
[7]   Hexavalent (G, s)-transitive graphs [J].
Guo, Song-Tao ;
Hua, Xiao-Hui ;
Li, Yan-Tao .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (04) :923-931
[8]   A note on pentavalent s-transitive graphs [J].
Guo, Song-Tao ;
Feng, Yan-Quan .
DISCRETE MATHEMATICS, 2012, 312 (15) :2214-2216
[9]  
Huppert B, 1967, EUDLICHE GRUPPEN
[10]  
Ivanov A., 1999, GEOMETRY SPORADIC GR