Time to Recurrence and Survival in Serous Ovarian Tumors Predicted from Integrated Genomic Profiles

被引:73
作者
Mankoo, Parminder K. [1 ]
Shen, Ronglai [2 ]
Schultz, Nikolaus [1 ]
Levine, Douglas A. [3 ]
Sander, Chris [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Computat Biol Ctr, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Surg, Gynecol Serv, New York, NY 10021 USA
来源
PLOS ONE | 2011年 / 6卷 / 11期
基金
美国国家卫生研究院;
关键词
PROPORTIONAL HAZARDS; VARIABLE SELECTION; CANCER; CHEMOTHERAPY; CELLS; DIFFERENTIATION; PROLIFERATION; RESISTANCE; REGRESSION; CARCINOMA;
D O I
10.1371/journal.pone.0024709
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Serous ovarian cancer (SeOvCa) is an aggressive disease with differential and often inadequate therapeutic outcome after standard treatment. The Cancer Genome Atlas (TCGA) has provided rich molecular and genetic profiles from hundreds of primary surgical samples. These profiles confirm mutations of TP53 in similar to 100% of patients and an extraordinarily complex profile of DNA copy number changes with considerable patient-to-patient diversity. This raises the joint challenge of exploiting all new available datasets and reducing their confounding complexity for the purpose of predicting clinical outcomes and identifying disease relevant pathway alterations. We therefore set out to use multi-data type genomic profiles (mRNA, DNA methylation, DNA copy-number alteration and microRNA) available from TCGA to identify prognostic signatures for the prediction of progression-free survival (PFS) and overall survival (OS). Methodology/Principal Findings: We implemented a multivariate Cox Lasso model and median time-to-event prediction algorithm and applied it to two datasets integrated from the four genomic data types. We (1) selected features through cross-validation; (2) generated a prognostic index for patient risk stratification; and (3) directly predicted continuous clinical outcome measures, that is, the time to recurrence and survival time. We used Kaplan-Meier p-values, hazard ratios (HR), and concordance probability estimates (CPE) to assess prediction performance, comparing separate and integrated datasets. Data integration resulted in the best PFS signature (withheld data: p-value = 0.008; HR = 2.83; CPE = 0.72). Conclusions/Significance: We provide a prediction tool that inputs genomic profiles of primary surgical samples and generates patient-specific predictions for the time to recurrence and survival, along with outcome risk predictions. Using integrated genomic profiles resulted in information gain for prediction of outcomes. Pathway analysis provided potential insights into functional changes affecting disease progression. The prognostic signatures, if prospectively validated, may be useful for interpreting therapeutic outcomes for clinical trials that aim to improve the therapy for SeOvCa patients.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Identification of potential markers for differentiating epithelial ovarian cancer from ovarian low malignant potential tumors through integrated bioinformatics analysis
    Hao, Wende
    Zhao, Hongyu
    Li, Zhefeng
    Li, Jie
    Guo, Jiahao
    Chen, Qi
    Gao, Yan
    Ren, Meng
    Zhao, Xiaoting
    Yue, Wentao
    JOURNAL OF OVARIAN RESEARCH, 2021, 14 (01)
  • [22] Genetic characterization of primary and metastatic high-grade serous ovarian cancer tumors reveals distinct features associated with survival
    Kotnik, Emilee N.
    Mullen, Mary M.
    Spies, Nicholas C.
    Li, Tiandao
    Inkman, Matthew
    Zhang, Jin
    Martins-Rodrigues, Fernanda
    Hagemann, Ian S.
    McCourt, Carolyn K.
    Thaker, Premal H.
    Hagemann, Andrea R.
    Powell, Matthew A.
    Mutch, David G.
    Khabele, Dineo
    Longmore, Gregory D.
    Mardis, Elaine R.
    Maher, Christopher A.
    Miller, Christopher A.
    Fuh, Katherine C.
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [23] Tumour morphology after neoadjuvant chemotherapy as a predictor of survival in serous ovarian cancer: an experience from a tertiary care centre in India
    Khandakar, Binny
    Kumar, Lalit
    Kumar, Sunesh
    Gupta, Siddharth Datta
    Kalaivani, M.
    Iyer, Venkateswaran K.
    Mathur, Sandeep R.
    MALAYSIAN JOURNAL OF PATHOLOGY, 2015, 37 (02) : 115 - 121
  • [24] The diagnostic utility of TP53 and CDKN2A to distinguish ovarian high-grade serous carcinoma from low-grade serous ovarian tumors
    Altman, Alon D.
    Nelson, Gregg S.
    Ghatage, Prafull
    McIntyre, John B.
    Capper, David
    Chu, Pamela
    Nation, Jill G.
    Karnezis, Anthony N.
    Han, Guangming
    Kalloger, Steve E.
    Koebel, Martin
    MODERN PATHOLOGY, 2013, 26 (09) : 1255 - 1263
  • [25] Sulfation of O-glycans on Mucin-type Proteins From Serous Ovarian Epithelial Tumors
    Thomsson, Kristina A.
    Vitiazeva, Varvara
    Mateoiu, Constantina
    Jin, Chunsheng
    Liu, Jining
    Holgersson, Jan
    Weijdegard, Birgitta
    Sundfeldt, Karin
    Karlsson, Niclas G.
    MOLECULAR & CELLULAR PROTEOMICS, 2021, 20
  • [26] Using Genomic Variation to Distinguish Ovarian High-Grade Serous Carcinoma from Benign Fallopian Tubes
    Gonzalez-Bosquet, Jesus
    Cardillo, Nicholas D. D.
    Reyes, Henry D. D.
    Smith, Brian J. J.
    Leslie, Kimberly K. K.
    Bender, David P. P.
    Goodheart, Michael J. J.
    Devor, Eric J. J.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (23)
  • [27] Cytokine Profiles in Cyst Fluids From Ovarian Tumors Reflect Immunosuppressive State of the Tumor
    Yigit, Refika
    Massuger, Leon F. A. G.
    Zusterzeel, Petra L. M.
    Pots, Jeanette
    Figdor, Carl G.
    Torensma, Ruurd
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2011, 21 (07) : 1241 - 1247
  • [28] WT1 Positive Ovarian Endometrioid Tumors: Observations From Consult Cases and Strategies for Distinguishing From Serous Neoplasms
    Rajendran, Simon
    McCluggage, W. Glenn
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL PATHOLOGY, 2022, 41 (02) : 191 - 202
  • [29] A nationwide study of serous "borderline" ovarian tumors in Denmark 1978-2002: Centralized pathology review and overall survival compared with the general population
    Hannibal, Charlotte Gerd
    Vang, Russell
    Junge, Jette
    Frederiksen, Kirsten
    Kjaerbye-Thygesen, Anette
    Andersen, Klaus Kaae
    Tabor, Ann
    Kurman, Robert J.
    Kjaer, Susanne K.
    GYNECOLOGIC ONCOLOGY, 2014, 134 (02) : 267 - 273
  • [30] Contrasting genomic profiles from metastatic sites, primary tumors, and liquid biopsies of advanced prostate cancer
    Necchi, Andrea
    Cucchiara, Vito
    Grivas, Petros
    Bratslavsky, Gennady
    Jacob, Joseph
    Spiess, Philippe E.
    Sokol, Ethan S.
    Killian, Jonathan Keith
    Lin, Douglas
    Ramkissoon, Shakti
    Huang, Richard S. P.
    Madison, Russell W.
    Venstrom, Jeffrey M.
    Schrock, Alexa B.
    Danziger, Natalie
    Decker, Brennan
    Gjoerup, Ole
    Graf, Ryon P.
    Oxnard, Geoffrey R.
    Tukachinsky, Hanna
    Ross, Jeffrey S.
    CANCER, 2021, 127 (24) : 4557 - 4564