Time to Recurrence and Survival in Serous Ovarian Tumors Predicted from Integrated Genomic Profiles

被引:73
作者
Mankoo, Parminder K. [1 ]
Shen, Ronglai [2 ]
Schultz, Nikolaus [1 ]
Levine, Douglas A. [3 ]
Sander, Chris [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Computat Biol Ctr, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Surg, Gynecol Serv, New York, NY 10021 USA
来源
PLOS ONE | 2011年 / 6卷 / 11期
基金
美国国家卫生研究院;
关键词
PROPORTIONAL HAZARDS; VARIABLE SELECTION; CANCER; CHEMOTHERAPY; CELLS; DIFFERENTIATION; PROLIFERATION; RESISTANCE; REGRESSION; CARCINOMA;
D O I
10.1371/journal.pone.0024709
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Serous ovarian cancer (SeOvCa) is an aggressive disease with differential and often inadequate therapeutic outcome after standard treatment. The Cancer Genome Atlas (TCGA) has provided rich molecular and genetic profiles from hundreds of primary surgical samples. These profiles confirm mutations of TP53 in similar to 100% of patients and an extraordinarily complex profile of DNA copy number changes with considerable patient-to-patient diversity. This raises the joint challenge of exploiting all new available datasets and reducing their confounding complexity for the purpose of predicting clinical outcomes and identifying disease relevant pathway alterations. We therefore set out to use multi-data type genomic profiles (mRNA, DNA methylation, DNA copy-number alteration and microRNA) available from TCGA to identify prognostic signatures for the prediction of progression-free survival (PFS) and overall survival (OS). Methodology/Principal Findings: We implemented a multivariate Cox Lasso model and median time-to-event prediction algorithm and applied it to two datasets integrated from the four genomic data types. We (1) selected features through cross-validation; (2) generated a prognostic index for patient risk stratification; and (3) directly predicted continuous clinical outcome measures, that is, the time to recurrence and survival time. We used Kaplan-Meier p-values, hazard ratios (HR), and concordance probability estimates (CPE) to assess prediction performance, comparing separate and integrated datasets. Data integration resulted in the best PFS signature (withheld data: p-value = 0.008; HR = 2.83; CPE = 0.72). Conclusions/Significance: We provide a prediction tool that inputs genomic profiles of primary surgical samples and generates patient-specific predictions for the time to recurrence and survival, along with outcome risk predictions. Using integrated genomic profiles resulted in information gain for prediction of outcomes. Pathway analysis provided potential insights into functional changes affecting disease progression. The prognostic signatures, if prospectively validated, may be useful for interpreting therapeutic outcomes for clinical trials that aim to improve the therapy for SeOvCa patients.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Predicting drug response of tumors from integrated genomic profiles by deep neural networks
    Chiu, Yu-Chiao
    Chen, Hung-I Harry
    Zhang, Tinghe
    Zhang, Songyao
    Gorthi, Aparna
    Wang, Li-Ju
    Huang, Yufei
    Chen, Yidong
    BMC MEDICAL GENOMICS, 2019, 12 (Suppl 1)
  • [2] Patterns of recurrence and role of adjuvant chemotherapy in stage II-IV serous ovarian borderline tumors
    Shih, Karin K.
    Zhou, Qin C.
    Aghajanian, Carol
    Huh, Jae
    Soslow, Robert A.
    Morgan, Jessica C.
    Iasonos, Alexia
    Chi, Dennis S.
    Barakat, Richard R.
    Abu-Rustum, Nadeem R.
    GYNECOLOGIC ONCOLOGY, 2010, 119 (02) : 270 - 273
  • [3] Integrated Clinical and Genomic Models to Predict Optimal Cytoreduction in High-Grade Serous Ovarian Cancer
    Cardillo, Nicholas
    Devor, Eric J.
    Pedra Nobre, Silvana
    Newtson, Andreea
    Leslie, Kimberly
    Bender, David P.
    Smith, Brian J.
    Goodheart, Michael J.
    Gonzalez-Bosquet, Jesus
    CANCERS, 2022, 14 (14)
  • [4] Somatic Genomic and Transcriptomic Characterization of Primary Ovarian Serous Borderline Tumors and Low-Grade Serous Carcinomas
    Struzinska, Ivana
    Hajkova, Nikola
    Hojny, Jan
    Krkavcova, Eva
    Michalkova, Romana
    Bui, Quang Hiep
    Matej, Radoslav
    Laco, Jan
    Drozenova, Jana
    Fabian, Pavel
    Skapa, Petr
    Spurkova, Zuzana
    Cibula, David
    Fruehauf, Filip
    Jirasek, Tomas
    Zima, Tomas
    Mehes, Gabor
    Bartu, Michaela Kendall
    Nemejcova, Kristyna
    Dundr, Pavel
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2024, 26 (04) : 257 - 266
  • [5] Synergistic AHR Binding Pathway with EMT Effects on Serous Ovarian Tumors Recognized by Multidisciplinary Integrated Analysis
    Su, Kuo-Min
    Gao, Hong-Wei
    Chang, Chia-Ming
    Lu, Kai-Hsi
    Yu, Mu-Hsien
    Lin, Yi-Hsin
    Liu, Li-Chun
    Chang, Chia-Ching
    Li, Yao-Feng
    Chang, Cheng-Chang
    BIOMEDICINES, 2021, 9 (08)
  • [6] Profiles of Genomic Instability in High-Grade Serous Ovarian Cancer Predict Treatment Outcome
    Wang, Zhigang C.
    Birkbak, Nicolai Juul
    Culhane, Aedin C.
    Drapkin, Ronny
    Fatima, Aquila
    Tian, Ruiyang
    Schwede, Matthew
    Alsop, Kathryn
    Daniels, Kathryn E.
    Piao, Huiying
    Liu, Joyce
    Etemadmoghadam, Dariush
    Miron, Alexander
    Salvesen, Helga B.
    Mitchell, Gillian
    DeFazio, Anna
    Quackenbush, John
    Berkowitz, Ross S.
    Iglehart, J. Dirk
    Bowtell, David D. L.
    Matulonis, Ursula A.
    CLINICAL CANCER RESEARCH, 2012, 18 (20) : 5806 - 5815
  • [7] PAX2 and PAX8 Reliably Distinguishes Ovarian Serous Tumors From Mucinous Tumors
    Wang, Min
    Ma, Haifen
    Pan, Yunbao
    Xiao, Weihua
    Li, Junqiang
    Yu, Jihong
    He, Ji
    APPLIED IMMUNOHISTOCHEMISTRY & MOLECULAR MORPHOLOGY, 2015, 23 (04) : 280 - 287
  • [8] PDK1 is Expressed in Ovarian Serous Carcinoma and Correlates with Improved Survival in High-grade Tumors
    Lohneis, Philipp
    Darb-Esfahani, Silvia
    Dietel, Manfred
    Braicu, Ioana
    Sehouli, Jalid
    Arsenic, Ruza
    ANTICANCER RESEARCH, 2015, 35 (11) : 6329 - 6334
  • [9] Relative impact of multi-layered genomic data on gene expression phenotypes in serous ovarian tumors
    Sohn, Kyung-Ah
    Kim, Dokyoon
    Lim, Jaehyun
    Kim, Ju Han
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [10] Expression profiles of PRKG1, SDF2L1 and PPP1R12A are predictive and prognostic factors for therapy response and survival in high-grade serous ovarian cancer
    Benvenuto, Giuseppe
    Todeschini, Paola
    Paracchini, Lara
    Calura, Enrica
    Fruscio, Robert
    Romani, Chiara
    Beltrame, Luca
    Martini, Paolo
    Ravaggi, Antonella
    Ceppi, Lorenzo
    Sales, Gabriele
    Donati, Federica
    Perego, Patrizia
    Zanotti, Laura
    Ballabio, Sara
    Grassi, Tommaso
    Delle Marchette, Martina
    Tognon, Germana
    Sartori, Enrico
    Adorni, Marco
    Odicino, Franco
    D'Incalci, Maurizio
    Bignotti, Eliana
    Romualdi, Chiara
    Marchini, Sergio
    INTERNATIONAL JOURNAL OF CANCER, 2020, 147 (02) : 565 - 574