Continuum limits of discrete isoperimetric problems and Wulff shapes in lattices and quasicrystal tilings

被引:2
作者
Del Nin, Giacomo [1 ]
Petrache, Mircea [2 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7HP, W Midlands, England
[2] Pontificia Univ Catolica Chile, Fac Matemat, Avda Vicuna Mackenna 4860, Santiago 6904441, Chile
基金
欧洲研究理事会;
关键词
GEOMETRIC-MODELS; N-3/4; LAW; CRYSTALLIZATION; ENERGIES; SYSTEMS; THEOREM; PROOF; SETS;
D O I
10.1007/s00526-022-02318-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove discrete-to-continuum convergence of interaction energies defined on lattices in the Euclidean space (with interactions beyond nearest neighbours) to a crystalline perimeter, and we discuss the possible Wulff shapes obtainable in this way. Exploiting the "multigrid construction" of quasiperiodic tilings (which is an extension of De Bruijn's "pentagrid" construction of Penrose tilings) we adapt the same techniques to also find the macroscopical homogenized perimeter when we microscopically rescale a given quasiperiodic tiling.
引用
收藏
页数:44
相关论文
共 51 条
[1]   LOCAL AND NONLOCAL CONTINUUM LIMITS OF ISING-TYPE ENERGIES FOR SPIN SYSTEMS [J].
Alicandro, Roberto ;
Gelli, Maria Stella .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) :895-931
[2]  
Althoff M, 2022, Arxiv, DOI arXiv:1512.02794
[3]  
Ambrosio L., 2000, OX MATH M, pxviii
[4]  
[Anonymous], 2018, Aperiodic Crystals: From Modulated Phases to Quasicrystals
[5]   Crystallization to the Square Lattice for a Two-Body Potential [J].
Betermin, Laurent ;
De Luca, Lucia ;
Petrache, Mircea .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (02) :987-1053
[6]  
Bourbaki N., 1998, Elements of Mathematics (Berlin)
[7]  
Braides A, 2002, J CONVEX ANAL, V9, P363
[8]   Interfacial energies on quasicrystals [J].
Braides, Andrea ;
Causin, Andrea ;
Solci, Margherita .
IMA JOURNAL OF APPLIED MATHEMATICS, 2012, 77 (06) :816-836
[9]   Homogenization of Penrose tilings [J].
Braides, Andrea ;
Riey, Giuseppe ;
Solci, Margherita .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) :697-700
[10]   Maximal Fluctuations on Periodic Lattices: An Approach via Quantitative Wulff Inequalities [J].
Cicalese, Marco ;
Leonardi, Gian Paolo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (03) :1931-1944