Fabrication and electrochemical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes by sol-gel method

被引:38
|
作者
Yi, Eun-jeong [1 ]
Yoon, Keun-young [1 ]
Jung, Hyun-Ah [1 ]
Nakayama, Tadachika [2 ]
Ji, Mi-jung [3 ]
Hwang, Haejin [1 ]
机构
[1] Inha Univ, Dept Mat Sci & Engn, 100 Inha Ro, Incheon 22212, South Korea
[2] Nagaoka Univ Technol, Dept Mech Engn, 1603-1 Kamitomioka, Nagaoka, Niigata 9402188, Japan
[3] Korea Inst Ceram Engn & Tech, 101 Soho Ro, Jinju Si, Gyeongsangnam D, South Korea
基金
新加坡国家研究基金会;
关键词
Sol-gel technique; All-solid-state lithium batteries; Solid electrolytes; NASICON; Conductivity; ELECTRICAL-PROPERTIES; GLASS-CERAMICS; AL;
D O I
10.1016/j.apsusc.2018.12.202
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium super ionic conductor (NASICON)-type solid electrolytes, Li1.3Al0.3Ti1.7(PO4)(3) (LATP), have high lithium ion conductivity and chemical/electrochemical stability. In this study, we proposed a new sol-gel route to synthesize LATP precursor powder. The LATP powder was prepared from lithium nitrate (LiNO3), aluminum phosphate (AlPO4), ammonium phosphate (NH3PO4), and titanium isopropoxide (Ti-(OCH(CH3)(2))(4)). The LATP electrolyte with high relative density (99%) and lithium ion conductivity (4.2 x 10(-4) S/cm at 30 degrees C) could be fabricated by sintering the precursor powder at 1000 degrees C for 6 h. XRD analysis results revealed that the electrolyte sample sintered at 1000 degrees C for 6 h was impurity-free single phase LATP. FE-SEM observations showed that the grain size and density increased with increasing sintering temperature. AC impedance spectra and SEM observations suggest that the enhanced lithium ion conductivity was due to an increase in grain size and density of the LATP electrolyte.
引用
收藏
页码:622 / 626
页数:5
相关论文
共 50 条
  • [31] Combined quantitative microscopy on the microstructure and phase evolution in Li1.3Al0.3Ti1.7(PO4)3 ceramics
    Deniz Cihan GUNDUZ
    Roland SCHIERHOLZ
    Shicheng YU
    Hermann TEMPEL
    Hans KUNGL
    Rüdiger-A.EICHEL
    Journal of Advanced Ceramics, 2020, 9 (02) : 149 - 161
  • [32] A simple and effective method to prepare dense Li1.3Al0.3Ti1.7(PO4)3solid-state electrolyte for lithium-oxygen batteries
    Ren, Yaqi
    Deng, Hao
    Zhao, Hong
    Zhou, Zheng
    Wei, Zhaohuan
    IONICS, 2020, 26 (12) : 6049 - 6056
  • [33] Enhancing the interface stability of Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by amorphous Li1.5Al0.5Ge1.5(PO4)3 modification
    Li, Lianchuan
    Zhang, Ziqi
    Luo, Linshan
    You, Run
    Jiao, Jinlong
    Huang, Wei
    Wang, Jianyuan
    Li, Cheng
    Han, Xiang
    Chen, Songyan
    IONICS, 2020, 26 (08) : 3815 - 3821
  • [34] Microstructure and ionic conductivities of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes produced by cold sintering assisted process
    Cai, Hong
    Yu, Tong
    Xie, Dongrui
    Sun, Benshuang
    Cheng, Jiang
    Li, Lu
    Bao, Xujin
    Zhang, Hongtao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
  • [35] Synthesis and sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte for ceramics with improved Li+ conductivity
    Waetzig, Katja
    Rost, Axel
    Heubner, Christian
    Coeler, Matthias
    Nikolowski, Kristian
    Wolter, Mareike
    Schilm, Jochen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 818
  • [36] Composite Solid State Lithium Ion Electrolyte Based on Li7La3Zr2O12 and Li1.3Al0.3Ti1.7(PO4)3
    Yan, Bing-Gong
    Zhu, Ya-Qi
    Lu, Li
    2015 INTERNATIONAL CONFERENCE ON ENVIRONMENT, MANUFACTURING INDUSTRY AND ECONOMIC DEVELOPMENT, (EMIED 2015), 2015, : 212 - 218
  • [37] Improved performance all-solid-state electrolytes with high compacted density of monodispersed spherical Li1.3Al0.3Ti1.7(PO4)3 particles
    Wang, Zhiyan
    Kou, Zhiyan
    Miao, Chang
    Xiao, Wei
    CERAMICS INTERNATIONAL, 2019, 45 (11) : 14469 - 14473
  • [38] Enhanced ionic conductivity and electrochemical stability of Indium doping Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries
    Jieqiong Li
    Chengjin Liu
    Chang Miao
    Zhiyan Kou
    Wei Xiao
    Ionics, 2022, 28 : 63 - 72
  • [39] Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid electrolytes synthesized by microwave-assisted hydrothermal reactions for Li all-solid-state battery applications
    Yu, Cheng-En
    Gregory, Duncan H.
    Liu, Wei-Ren
    SURFACE & COATINGS TECHNOLOGY, 2024, 481
  • [40] Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Hallopeau, Leopold
    Bregiroux, Damien
    Rousse, Gwenaelle
    Portehault, David
    Stevens, Philippe
    Toussaint, Gwenaelle
    Laberty-Robert, Christel
    JOURNAL OF POWER SOURCES, 2018, 378 : 48 - 52