Fabrication and electrochemical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes by sol-gel method

被引:38
|
作者
Yi, Eun-jeong [1 ]
Yoon, Keun-young [1 ]
Jung, Hyun-Ah [1 ]
Nakayama, Tadachika [2 ]
Ji, Mi-jung [3 ]
Hwang, Haejin [1 ]
机构
[1] Inha Univ, Dept Mat Sci & Engn, 100 Inha Ro, Incheon 22212, South Korea
[2] Nagaoka Univ Technol, Dept Mech Engn, 1603-1 Kamitomioka, Nagaoka, Niigata 9402188, Japan
[3] Korea Inst Ceram Engn & Tech, 101 Soho Ro, Jinju Si, Gyeongsangnam D, South Korea
基金
新加坡国家研究基金会;
关键词
Sol-gel technique; All-solid-state lithium batteries; Solid electrolytes; NASICON; Conductivity; ELECTRICAL-PROPERTIES; GLASS-CERAMICS; AL;
D O I
10.1016/j.apsusc.2018.12.202
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium super ionic conductor (NASICON)-type solid electrolytes, Li1.3Al0.3Ti1.7(PO4)(3) (LATP), have high lithium ion conductivity and chemical/electrochemical stability. In this study, we proposed a new sol-gel route to synthesize LATP precursor powder. The LATP powder was prepared from lithium nitrate (LiNO3), aluminum phosphate (AlPO4), ammonium phosphate (NH3PO4), and titanium isopropoxide (Ti-(OCH(CH3)(2))(4)). The LATP electrolyte with high relative density (99%) and lithium ion conductivity (4.2 x 10(-4) S/cm at 30 degrees C) could be fabricated by sintering the precursor powder at 1000 degrees C for 6 h. XRD analysis results revealed that the electrolyte sample sintered at 1000 degrees C for 6 h was impurity-free single phase LATP. FE-SEM observations showed that the grain size and density increased with increasing sintering temperature. AC impedance spectra and SEM observations suggest that the enhanced lithium ion conductivity was due to an increase in grain size and density of the LATP electrolyte.
引用
收藏
页码:622 / 626
页数:5
相关论文
共 50 条
  • [1] The relationship of structural and electrochemical properties of NASICON structure Li1.3Al0.3Ti1.7 (PO4)3 electrolytes by a sol-gel method
    Yoon, Yongsub
    Kim, Junghoon
    Park, Chanhwi
    Shin, Dongwook
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2013, 14 (04): : 563 - 566
  • [2] Electrical properties of LiTi2(PO4)3 and Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes containing ionic liquid
    Kwatek, K.
    Nowinski, J. L.
    SOLID STATE IONICS, 2017, 302 : 54 - 60
  • [3] Sol-gel preparation and characterization of Li1.3Al0.3Ti1.7(PO4)3 sintered with flux of LiBO2
    Wu Xianming
    Li Runxiu
    Chen Shang
    He Zeqiang
    Ma Mingyou
    RARE METALS, 2010, 29 (05) : 515 - 518
  • [4] Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping
    Jingrui Kang
    Xu Guo
    Rui Gu
    Honglei Hao
    Yi Tang
    Jiahui Wang
    Li Jin
    Hongfei Li
    Xiaoyong Wei
    Nano Research, 2024, 17 : 1465 - 1472
  • [5] Influence of excess lithium and sintering on the conductivity of Li1.3Al0.3Ti1.7(PO4)3
    Li, Ziying
    Zhao, Xiujian
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (04)
  • [6] An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics
    Waetzig, Katja
    Rost, Axel
    Langklotz, Ulrike
    Matthey, Bjoern
    Schilm, Jochen
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2016, 36 (08) : 1995 - 2001
  • [7] Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7 (PO4)3 solid electrolytes: The effect of dispersant
    Zhao, Erqing
    Ma, Furui
    Jin, Yongcheng
    Kanamura, Kiyoshi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 680 : 646 - 653
  • [8] The influence of phosphorous source on the properties of NASICON lithiumion conductor Li1.3Al0.3Ti1.7(PO4)3
    Lu, Xiaojuan
    Wang, Rui
    Zhang, Feng
    Li, Jing
    SOLID STATE IONICS, 2020, 354
  • [9] High ionic conductivity Y doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Zhao, Erqing
    Guo, Yudi
    Xu, Guangri
    Yuan, Long
    Liu, Jingcheng
    Li, Xiaobo
    Yang, Li
    Ma, Jingjing
    Li, Yuanchao
    Fan, Shumin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 : 384 - 391
  • [10] Standardization of ionic conductivity measurements in Li1.3Al0.3Ti1.7(PO4)3-polymer composite electrolytes
    Jacob, Megha Sara
    Doddi, Nikhil
    Shanmugam, Vasu
    Prasanna, Gopikrishnan Ebenezer
    Peddi, Mahender
    Vedarajan, Raman
    Moodakare, Sahana B.
    Gopalan, Raghavan
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 286