Deep phase retrieval for astronomical Shack-Hartmann wavefront sensors

被引:26
|
作者
Guo, Youming [1 ,2 ,3 ]
Wu, Yu [1 ,2 ,3 ]
Li, Ying [1 ,2 ,3 ]
Rao, Xuejun [1 ,2 ]
Rao, Changhui [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Adapt Opt, POB 350, Chengdu 610209, Sichuan, Peoples R China
[2] Chinese Acad Sci, Inst Opt & Elect, Lab Adapt Opt, POB 350, Chengdu 610209, Sichuan, Peoples R China
[3] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
atmospheric effects; instrumentation: adaptive optics; techniques: image processing; CENTROID COMPUTATION; RECONSTRUCTION;
D O I
10.1093/mnras/stab3690
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a high-speed deep learning-based phase retrieval approach for Shack-Hartmann wavefront sensors used in astronomical adaptive optics. It reconstructs the Zernike modal coefficients from the image captured by the wavefront sensor with a lightweight convolutional neural network. Compared to the traditional slope-based wavefront reconstruction, the proposed approach uses the image captured by the sensor directly as inputs for more high-order aberrations. Compared to the recently developed iterative phase retrieval methods, the speed is much faster with the computation time less than 1 ms for a 100-aperture configuration, which may satisfy the requirement of an astronomical adaptive optics system. Simulations have been done to demonstrate the advantages of this approach. Experiments on a 241-unit deformable-secondary-mirror AOS have also been done to validate the proposed approach.
引用
收藏
页码:4347 / 4354
页数:8
相关论文
共 50 条
  • [31] Analysis of the wavefront reconstruction error of the spot location algorithms for the Shack-Hartmann wavefront sensor
    Wei, Ping
    Li, Xinyang
    Luo, Xi
    Li, Jianfeng
    OPTICAL ENGINEERING, 2020, 59 (04)
  • [32] A Shack-Hartmann wavefront sensor projected on to the sky with reduced focal anisoplanatism
    Butterley, T
    Love, GD
    Wilson, RW
    Myers, RM
    Morris, TJ
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 368 (02) : 837 - 843
  • [33] Characterizing daytime wind profiles with the wide-field Shack-Hartmann wavefront sensor
    Wang, Zhiyong
    Zhang, Lanqiang
    Rao, Changhui
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (04) : 4910 - 4921
  • [34] The hybrid Shack-Hartmann/G-SCIDAR instrument
    Hernandez, M. A. C. Rodriguez
    Jimenez-Fuensalida, Jesus
    Garcia-Lorenzo, Begona M.
    Delgado, Jose M.
    Hernandez, Elvio
    Hoegernann, C.
    Ramio, Hector Vazquez
    OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS X, 2007, 6747 : W7470 - W7470
  • [35] Improving sub-pixel shifts estimation in a Shack-Hartmann wavefront sensor
    Popowicz, Adam
    OPTICS LETTERS, 2019, 44 (10) : 2602 - 2604
  • [36] Hyperspectral Shack-Hartmann test
    Birch, Gabriel C.
    Descour, Michael R.
    Tkaczyk, Tomasz S.
    APPLIED OPTICS, 2010, 49 (28) : 5399 - 5406
  • [37] Arbitrary wavefront uncertainty evaluation for the Shack-Hartmann wavefront sensor using physical optics propagation
    Zhou, Jichong
    He, Qiaozhi
    Qu, Yuan
    Zhao, Dineng
    Wu, Ziyin
    Yang, Jiamiao
    APPLIED PHYSICS LETTERS, 2023, 123 (07)
  • [38] Auto gain control of EMCCD in Shack-Hartmann wavefront sensor for adaptive optics
    Zhu, Zhaoyi
    Li, Dayu
    Hu, Lifa
    Mu, QuanQuan
    Cao, Zhaoliang
    Wang, Yukun
    Wang, Shaoxin
    Xuan, Li
    OPTICS COMMUNICATIONS, 2016, 380 : 469 - 475
  • [39] A Method Used to Improve the Dynamic Range of Shack-Hartmann Wavefront Sensor in Presence of Large Aberration
    Yang, Wen
    Wang, Jianli
    Wang, Bin
    SENSORS, 2022, 22 (19)
  • [40] Automatic Compressive Sensing of Shack-Hartmann Sensors Based on the Vision Transformer
    Zhang, Qingyang
    Zuo, Heng
    Cui, Xiangqun
    Yuan, Xiangyan
    Hu, Tianzhu
    PHOTONICS, 2024, 11 (11)