Higher-Order Derivatives of Lyapunov Functions And Ultimate Boundedness in the Sense of Poisson of Solutions to Systems of Differential Equations

被引:3
作者
Lapin, K. S. [1 ]
机构
[1] Mordovian State Pedag Inst, Saransk, Russia
关键词
Lyapunov function; uniform-ultimate boundedness; equiultimate boundedness; higherorder derivatives; partially controlled initial conditions;
D O I
10.1134/S0037446618060137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the higher-order derivatives of Lyapunov functions, we obtain sufficient tests of various types for the uniform-ultimate boundedness in the sense of Poisson of solutions and various types of equiultimate boundedness of solutions in the sense of Poisson.
引用
收藏
页码:1100 / 1104
页数:5
相关论文
共 14 条
[1]  
Baris Ya. S., 1985, UKR MATH J, V37, P117, DOI [10.1007/BF01059704, DOI 10.1007/BF01059704]
[2]  
Golechkov Yu. I., 2010, IZV RAEN DIFFER URAV, V15, P23
[3]   Poisson Total Boundedness of Solutions of Systems of Differential Equations and Lyapunov Vector Functions [J].
Lapin, K. S. .
MATHEMATICAL NOTES, 2018, 104 (1-2) :253-262
[4]   Ultimate boundedness with respect to part of the variables of solutions of systems of differential equations with partly controlled initial conditions [J].
Lapin, K. S. .
DIFFERENTIAL EQUATIONS, 2013, 49 (10) :1246-1251
[5]  
Miki K., 1985, RES REPT AKITA TECH, V20, P105
[6]  
Miki K., 1981, RES REPT AKITA TECH, V16, P118
[7]   ULTIMATE BOUNDEDNESS OF SOLUTIONS FOR A GENERALIZED LIENARD EQUATION WITH FORCING TERM [J].
NAKAJIMA, F .
TOHOKU MATHEMATICAL JOURNAL, 1994, 46 (03) :295-310
[8]   On Bounded Solutions of Ordinary Nonlinear Differential Equations of Order n [J].
Perov, A. I. .
DIFFERENTIAL EQUATIONS, 2010, 46 (09) :1236-1252
[9]  
Rumyantsev V., 1987, MOTION STABILITY STA
[10]  
Shchennikova E.V., 1997, MAT MODEL, V9, P24