β-Scorpion toxin effects suggest electrostatic interactions in domain II of voltage-dependent sodium channels

被引:30
作者
Mantegazza, M
Cestèle, S
机构
[1] Univ Mediterranee, CNRS, Ingn Prot Lab,IFR Jean Roche, FRE 2738,Fac Med Nord, F-13916 Marseille, France
[2] Ist Neurol Besta, Dipartimento Neurofisiopatol, I-20126 Milan, Italy
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2005年 / 568卷 / 01期
关键词
D O I
10.1113/jphysiol.2005.093484
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
beta-Scorpion toxins specifically modulate the voltage dependence of sodium channel activation by acting through a voltage-sensor trapping model. We used mutagenesis, functional analysis and the action of beta-toxin as tools to investigate the existence and role in channel activation of molecular interactions between the charged residues of the S2, S3 and S4 segments in domain 11 of sodium channels. Mutating to arginine the acidic residues of the S2 and S3 transmembrane segments in domain 11, or making charge-reversal mutation of the two outermost gating charges of the IIS4 voltage sensor, shifts the voltage dependence of channel activation to more positive potentials and enhances the effect of beta-scorpion toxin. Thus, mutations of acidic residues in IIS2 and IIS3 segments are able to promote voltage-sensor trapping in a way that is similar to the mutations of the arginines in the IIS4 segment. In order to disclose the network of interactions among acidic and basic residues we performed functional analysis of charge-inversion double mutants: our data suggest that the first arginine of the voltage sensor S4 in domain 11 (R850) interacts specifically with E805, D814 and E821 in the S2 and S3 segments, whereas the second arginine (R853) only interacts with D827 in the S3 segment. Our results suggest that the S2, S3 and S4 segments in domain 11 form a voltage-sensing structure, and that molecular interactions between the charged residues of this structure modulate the availability of the IIS4 voltage sensor for trapping by beta-toxins. They also provide unique insights into the molecular events that occur during channel activation, as well as into the structure of the channel.
引用
收藏
页码:13 / 30
页数:18
相关论文
共 38 条
[1]   Stirring up controversy with a voltage sensor paddle [J].
Ahern, CA ;
Horn, R .
TRENDS IN NEUROSCIENCES, 2004, 27 (06) :303-307
[2]   SODIUM-CHANNELS AND GATING CURRENTS [J].
ARMSTRONG, CM .
PHYSIOLOGICAL REVIEWS, 1981, 61 (03) :644-683
[3]   From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels [J].
Catterall, WA .
NEURON, 2000, 26 (01) :13-25
[4]  
CATTERALL WA, 1986, ANNU REV BIOCHEM, V55, P953, DOI 10.1146/annurev.biochem.55.1.953
[5]   Voltage sensor-trapping:: Enhanced activation of sodium channels by β-scorpion toxin bound to the S3-S4 loop in domain II [J].
Cestèle, S ;
Qu, YS ;
Rogers, JC ;
Rochat, H ;
Scheuer, T ;
Catterall, WA .
NEURON, 1998, 21 (04) :919-931
[6]   Neutralization of gating charges in domain II of the sodium channel α subunit enhances voltage-sensor trapping by a β-scorpion toxin [J].
Cestèle, S ;
Scheuer, T ;
Mantegazza, M ;
Rochat, H ;
Catterall, WA .
JOURNAL OF GENERAL PHYSIOLOGY, 2001, 118 (03) :291-301
[7]   Molecular mechanisms of neurotoxin action on voltage-gated sodium channels [J].
Cestèle, S ;
Catterall, WA .
BIOCHIMIE, 2000, 82 (9-10) :883-892
[8]   Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation [J].
Cha, A ;
Ruben, PC ;
George, AL ;
Fujimoto, E ;
Bezanilla, F .
NEURON, 1999, 22 (01) :73-87
[9]   Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements [J].
Chanda, B ;
Asamoah, OK ;
Bezanilla, F .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 123 (03) :217-230
[10]   Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation [J].
Chanda, B ;
Bezanilla, F .
JOURNAL OF GENERAL PHYSIOLOGY, 2002, 120 (05) :629-645