Single image super-resolution via low-rank tensor representation and hierarchical dictionary learning

被引:3
|
作者
Jing, Peiguang [1 ]
Guan, Weili [2 ]
Bai, Xu [1 ]
Guo, Hongbin [1 ]
Su, Yuting [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
[2] Hewlett Packard Enterprise Singapore, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
Super-resolution; Low-rank representation; Tensor decomposition; Dictionary learning; RESOLUTION; ALGORITHM;
D O I
10.1007/s11042-019-08259-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Super-resolution (SR) has been widely studied due to its importance in real applications and scenarios. In this paper, we focus on generating an SR image from a single low-resolution (LR) input image by employing the multi-resolution structures of an input image. By taking the LR image and its downsampled resolution (DR) and upsampled resolution (UR) versions as inputs, we propose a hierarchical dictionary learning approach to learn the latent UR-LR dictionary pair by preserving the internal structure coherence with the LR-DR dictionary pair. Note that an imposed restriction involved in this process is that the pairwise resolution images are jointly trained to obtain more compact patterns of image patches. In particular, to better explore the underlying structures of tensor data spanned by image patches, we propose a low-rank tensor approximation (LRTA) algorithm based on nuclear-norm regularization to embed input image patches into a low-dimensional space. Experimental results from publicly used images show that our proposed method achieves performance comparable with that of other state-of-the-art SR algorithms, even without using any external training databases.
引用
收藏
页码:11767 / 11785
页数:19
相关论文
共 50 条
  • [41] Single image super-resolution based on sparse representation using edge-preserving regularization and a low-rank constraint
    Gao, Rui
    Cheng, Deqiang
    Kou, Qiqi
    Chen, Liangliang
    IET IMAGE PROCESSING, 2023, 17 (03) : 956 - 968
  • [42] Hyperspectral Image Super Resolution via Nonconvex Low-rank Constraint of Tensor Ring Factors
    Zheng Jianwei
    Zhou Xinjie
    Xu Honghui
    Qing Mengjie
    Bai Cong
    ACTA PHOTONICA SINICA, 2022, 51 (02)
  • [43] Dictionary Learning for Image Super-resolution
    Li Juan
    Wu Jin
    Yang Shen
    Liu Jin
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 7195 - 7199
  • [44] Incremental Dictionary Learning-Driven Tensor Low-Rank and Sparse Representation for Hyperspectral Image Classification
    Xue, Zhaohui
    Nie, Xiangyu
    Zhang, Mengxue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [45] Single Image Super-Resolution Based on Incoherent Dictionary Learning
    Wang, Junhua
    Liao, Xiaofang
    Li, Jianjun
    Li, Junshan
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 555 - 558
  • [46] HYPERSPECTRAL SUPER-RESOLUTION VIA LOW RANK TENSOR TRIPLE DECOMPOSITION
    Cui, Xiaofei
    Chang, Jingya
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (03) : 942 - 966
  • [47] HYPERSPECTRAL SUPER-RESOLUTION VIA LOW RANK TENSOR TRIPLE DECOMPOSITION
    Cui, Xiaofei
    Chang, Jingya
    arXiv, 2023,
  • [48] Single Image Super-Resolution with Non-local Balanced Low-Rank Matrix Restoration
    You, Xinge
    Xue, Weiyong
    Lei, Jiajia
    Zhang, Peng
    Cheung, Yiu-ming
    Tang, Yuanyan
    Zhou, Naiding
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1255 - 1260
  • [49] Hyperspectral Super-Resolution via GlobalLocal Low-Rank Matrix Estimation
    Wu, Ruiyuan
    Ma, Wing-Kin
    Fu, Xiao
    Li, Qiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (10): : 7125 - 7140
  • [50] Single Image Super-Resolution via Projective Dictionary Learning with Anchored Neighborhood Regression
    Feng, Yihui
    Zhang, Yongbing
    Zhang, Yulun
    Shen, Tao
    Dai, Qionghai
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,