共 50 条
Phosphorylation profile of human AQP2 in urinary exosomes by LC-MS/MS phosphoproteomic analysis
被引:6
|作者:
Sakai, Masaki
[1
]
Yamamoto, Keiko
[2
]
Mizumura, Hiroaki
[1
]
Matsumoto, Tomoki
[1
]
Tanaka, Yasuko
[1
]
Noda, Yumi
[3
]
Ishibashi, Kenichi
[1
]
Yamamoto, Tadashi
[2
]
Sasaki, Sei
[1
,4
]
机构:
[1] Meiji Pharmaceut Univ, Dept Pathophysiol, 2-522-1 Noshio, Kiyose, Tokyo 2048588, Japan
[2] Niigata Univ, Biofluid Biomarker Ctr, Nishi Ku, 8050 Ikarashi 2 No Cho, Niigata 9502181, Japan
[3] Nitobe Mem Nakano Gen Hosp, Dept Nephrol, Tokyo 1648607, Japan
[4] Tokyo Med & Dent Univ, Dept Nephrol, Tokyo 1138519, Japan
关键词:
Aquaporin-2;
Urine concentration;
Proteomics;
Kidney;
Spectrometry;
WATER CHANNEL;
AQUAPORIN-2;
PHOSPHORYLATION;
VASOPRESSIN;
CLONING;
D O I:
10.1007/s10157-020-01899-4
中图分类号:
R5 [内科学];
R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号:
1002 ;
100201 ;
摘要:
Background Aquaporin-2 (AQP2) is a key water channel protein which determines the water permeability of the collecting duct. Multiple phosphorylation sites are present at the C-terminal of AQP2 including S256 (serine at 256 residue), S261, S264 and S/T269, which are regulated by vasopressin (VP) to modulate AQP2 trafficking. As the dynamics of these phosphorylations have been studied mostly in rodents, little is known about the phosphorylation of human AQP2 which has unique T269 in the place of S269 of rodent AQP2. Because AQP2 is excreted in urinary exosomes, the phosphoprotein profile of human AQP2 can be easily examined through urinary exosomes without any intervention. Methods Human urinary exosomes digested with trypsin or glutamyl endopeptidase (Glu-C) were examined by the liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) phosphoproteomic analysis. Results The most dominant phosphorylated AQP2 peptide identified was S256 phosphorylated form (pS256), followed by pS261 with less pS264 and far less pT269, which was confirmed by the western blot analyses using phosphorylated AQP2-specific antibodies. In a patient lacking circulating VP, administration of a VP analogue showed a transient increase (peak at 30-60 min) in excretion of exosomes with pS261 AQP2. Conclusion These data suggest that all phosphorylation sites of human AQP2 including T269 are phosphorylated and phosphorylations at S256 and S261 may play a dominant role in the urinary exosomal excretion of AQP2.
引用
收藏
页码:762 / 769
页数:8
相关论文