GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION

被引:0
|
作者
Li, Chi-Kwong [1 ]
Poon, Yiu-Tung [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Quantum error correction; joint higher rank numerical range; joint essential numerical range; self-adjoint operator; Hilbert space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the joint rank-k numerical range associated with the error operators of the channel is non-empty. In this paper, geometric properties of the joint rank k-numerical range are obtained and their implications to quantum computing are discussed. It is shown that for a given k if the dimension of the underlying Hilbert space of the quantum states is sufficiently large, then the joint rank k-numerical range of operators is always star-shaped and contains the convex hull of the rank (k) over cap -numerical range of the operators for sufficiently large (k) over cap. In case the operators are infinite dimensional, the joint rank cc-numerical range of the operators is a convex set closely related to the joint essential numerical ranges of the operators.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [41] Permutationally invariant codes for quantum error correction
    Pollatsek, H
    Ruskai, MB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 392 : 255 - 288
  • [42] Quantum error correction via convex optimization
    Robert L. Kosut
    Daniel A. Lidar
    Quantum Information Processing, 2009, 8 : 443 - 459
  • [43] Quantum error correction for various forms of noise
    Gea-Banacloche, J
    Clemens, JP
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS II, 2004, 5468 : 252 - 261
  • [44] Passive quantum error correction with linear optics
    de Brito, DB
    Ramos, RV
    PHYSICS LETTERS A, 2006, 352 (03) : 206 - 209
  • [45] FIDELITY AS A FIGURE OF MERIT IN QUANTUM ERROR CORRECTION
    Almlof, Jonas
    Bjork, Gunnar
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (1-2) : 9 - 20
  • [46] Towards scalable bosonic quantum error correction
    Terhal, B. M.
    Conrad, J.
    Vuillot, C.
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
  • [47] Robustness-optimized quantum error correction
    Layden, David
    Huang, Louisa Ruixue
    Cappellaro, Paola
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (02):
  • [48] Some Progress on Quantum Error Correction for Discrete and Continuous Error Models
    Li, Jincao
    IEEE ACCESS, 2020, 8 (46998-47012) : 46998 - 47012
  • [49] Universal quantum computation and quantum error correction with ultracold atomic mixtures
    Kasper, Valentin
    Gonzalez-Cuadra, Daniel
    Hegde, Apoorva
    Xia, Andy
    Dauphin, Alexandre
    Huber, Felix
    Tiemann, Eberhard
    Lewenstein, Maciej
    Jendrzejewski, Fred
    Hauke, Philipp
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)
  • [50] Higher rank numerical ranges and low rank perturbations of quantum channels
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (02) : 843 - 855