GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION

被引:0
|
作者
Li, Chi-Kwong [1 ]
Poon, Yiu-Tung [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Quantum error correction; joint higher rank numerical range; joint essential numerical range; self-adjoint operator; Hilbert space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the joint rank-k numerical range associated with the error operators of the channel is non-empty. In this paper, geometric properties of the joint rank k-numerical range are obtained and their implications to quantum computing are discussed. It is shown that for a given k if the dimension of the underlying Hilbert space of the quantum states is sufficiently large, then the joint rank k-numerical range of operators is always star-shaped and contains the convex hull of the rank (k) over cap -numerical range of the operators for sufficiently large (k) over cap. In case the operators are infinite dimensional, the joint rank cc-numerical range of the operators is a convex set closely related to the joint essential numerical ranges of the operators.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [31] Advances in quantum error correction based on superconducting quantum systems*
    Chen Zi-Jie
    Pan Xiao-Xuan
    Hua Zi-Yue
    Wang Wei-Ting
    Ma Yu-Wei
    Li Ming
    Zou Xu-Bo
    Sun Lu-Yan
    Zou Chang-Ling
    ACTA PHYSICA SINICA, 2022, 71 (24)
  • [32] QUANTUM ERROR CORRECTION AND FAULT-TOLERANT QUANTUM COMPUTING
    Gaitan, Frank
    Li, Ran
    DECOHERENCE SUPPRESSION IN QUANTUM SYSTEMS 2008, 2010, 3 : 53 - +
  • [33] Modeling coherent errors in quantum error correction
    Greenbaum, Daniel
    Dutton, Zachary
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (01):
  • [34] Bosonic quantum error correction codes in superconducting quantum circuits
    Cai, Weizhou
    Ma, Yuwei
    Wang, Weiting
    Zou, Chang-Ling
    Sun, Luyan
    FUNDAMENTAL RESEARCH, 2021, 1 (01): : 50 - 67
  • [35] Quantum error correction using weak measurements
    Parveen Kumar
    Apoorva Patel
    Quantum Information Processing, 2019, 18
  • [36] Practical limits of error correction for quantum metrology
    Shettell, Nathan
    Munro, William J.
    Markham, Damian
    Nemoto, Kae
    NEW JOURNAL OF PHYSICS, 2021, 23 (04):
  • [37] Channel-Optimized Quantum Error Correction
    Taghavi, Soraya
    Kosut, Robert L.
    Lidar, Daniel A.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (03) : 1461 - 1473
  • [38] Quantum error correction via convex optimization
    Kosut, Robert L.
    Lidar, Daniel A.
    QUANTUM INFORMATION PROCESSING, 2009, 8 (05) : 443 - 459
  • [39] Quantum error correction using weak measurements
    Kumar, Parveen
    Patel, Apoorva
    QUANTUM INFORMATION PROCESSING, 2019, 18 (02)
  • [40] An entropic analysis of approximate quantum error correction
    Cafaro, Carlo
    van Loock, Peter
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 404 : 34 - 46