GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION

被引:0
|
作者
Li, Chi-Kwong [1 ]
Poon, Yiu-Tung [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Quantum error correction; joint higher rank numerical range; joint essential numerical range; self-adjoint operator; Hilbert space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the joint rank-k numerical range associated with the error operators of the channel is non-empty. In this paper, geometric properties of the joint rank k-numerical range are obtained and their implications to quantum computing are discussed. It is shown that for a given k if the dimension of the underlying Hilbert space of the quantum states is sufficiently large, then the joint rank k-numerical range of operators is always star-shaped and contains the convex hull of the rank (k) over cap -numerical range of the operators for sufficiently large (k) over cap. In case the operators are infinite dimensional, the joint rank cc-numerical range of the operators is a convex set closely related to the joint essential numerical ranges of the operators.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [21] Algebraic formulation of quantum error correction
    Beny, Cedric
    Kribs, David W.
    Pasieka, Aron
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 : 597 - 603
  • [22] Probabilities of failure for quantum error correction
    Scott, A. J.
    QUANTUM INFORMATION PROCESSING, 2005, 4 (05) : 399 - 431
  • [23] Quantum error correction of photon loss with quantum encoding
    Han, Chao
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 62 (05) : 721 - 724
  • [24] On the Wilsonian Meaning of Quantum Error Correction
    Gomez, Cesar
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2021, 69 (02):
  • [25] Quantum error correction of photon loss with quantum encoding
    Chao Han
    Journal of the Korean Physical Society, 2013, 62 : 721 - 724
  • [26] Nuclear numerical range and quantum error correction codes for non-unitary noise models
    Patryk Lipka-Bartosik
    Karol Życzkowski
    Quantum Information Processing, 2017, 16
  • [27] Nuclear numerical range and quantum error correction codes for non-unitary noise models
    Lipka-Bartosik, Patryk
    Zyczkowski, Karol
    QUANTUM INFORMATION PROCESSING, 2017, 16 (01)
  • [28] On the efficiency of quantum error correction for quantum image transmission algorithm
    S S Ivanov
    P A Gilev
    I Y Popov
    Pramana, 96
  • [29] On the efficiency of quantum error correction for quantum image transmission algorithm
    Ivanov, S. S.
    Gilev, P. A.
    Popov, I. Y.
    PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (04):
  • [30] Advances in quantum error correction based onsuperconducting quantum systems
    Chen, Zi-Jie
    Pan, Xiao-Xuan
    Hua, Zi-Yue
    Wang, Wei-Ting
    Ma, Yu-Wei
    Li, Ming
    Zou, Xu-Bo
    Sun, Lu-Yan
    Zou, Chang-Ling
    ACTA PHYSICA SINICA, 2022, 71 (24)