GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION

被引:0
|
作者
Li, Chi-Kwong [1 ]
Poon, Yiu-Tung [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Quantum error correction; joint higher rank numerical range; joint essential numerical range; self-adjoint operator; Hilbert space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the joint rank-k numerical range associated with the error operators of the channel is non-empty. In this paper, geometric properties of the joint rank k-numerical range are obtained and their implications to quantum computing are discussed. It is shown that for a given k if the dimension of the underlying Hilbert space of the quantum states is sufficiently large, then the joint rank k-numerical range of operators is always star-shaped and contains the convex hull of the rank (k) over cap -numerical range of the operators for sufficiently large (k) over cap. In case the operators are infinite dimensional, the joint rank cc-numerical range of the operators is a convex set closely related to the joint essential numerical ranges of the operators.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [1] Higher rank matricial ranges and hybrid quantum error correction
    Cao, Ningping
    Kribs, David W.
    Li, Chi-Kwong
    Nelson, Mike, I
    Poon, Yiu-Tung
    Zeng, Bei
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 827 - 839
  • [2] Quantum interleaver: Quantum error correction for burst error
    Kawabata, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (11) : 3540 - 3543
  • [3] Continuous quantum error correction
    Sarovar, M
    Milburn, GJ
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS III, 2005, 5846 : 158 - 166
  • [4] Approximate Quantum Error Correction
    Benjamin Schumacher
    Michael D. Westmoreland
    Quantum Information Processing, 2002, 1 : 5 - 12
  • [5] On the Probabilistic Quantum Error Correction
    Kukulski, Ryszard
    Pawela, Lukasz
    Puchala, Zbigniew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4620 - 4640
  • [6] Quantum memories and error correction
    Wootton, James R.
    JOURNAL OF MODERN OPTICS, 2012, 59 (20) : 1717 - 1738
  • [7] Approximate Quantum Error Correction
    Schumacher, Benjamin
    Westmoreland, Michael D.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 5 - 12
  • [8] Research problems on numerical ranges in quantum computing
    Kribs, David W.
    Pasieka, Aron
    Laforest, Martin
    Ryan, Colm
    da Silva, Marcus P.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (05) : 491 - 502
  • [9] Quantum information: Qubits and quantum error correction
    Bennett, CH
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (02) : 153 - 176
  • [10] Quantum Information: Qubits and Quantum Error Correction
    Charles H. Bennett
    International Journal of Theoretical Physics, 2003, 42 : 153 - 176