A local discontinuous Galerkin method for the (non)-isothermal Navier-Stokes-Korteweg equations

被引:19
作者
Tian, Lulu [1 ]
Xu, Yan [2 ]
Kuerten, J. G. M. [1 ,3 ]
van der Vegt, J. J. W. [1 ]
机构
[1] Univ Twente, Dept Appl Math, Math Computat Sci Grp, NL-7500 AE Enschede, Netherlands
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Eindhoven Univ Technol, Dept Mech Engn, Computat Multiphase Flow, NL-5600 MB Eindhoven, Netherlands
关键词
Local discontinuous Galerkin method; (Non-)isothermal Navier-Stokes-Korteweg equations; Phase transition; Van der Waals equation of state; Implicit time integration; Accuracy and stability; COMPRESSIBLE FLUID MODELS; DIFFUSE-INTERFACE METHODS; LIQUID-VAPOR FLOWS; PHASE-TRANSITION; SURFACE-TENSION; COMPLEX FLUIDS; SYSTEMS; ENERGY; BOUNDARIES; SOLIDS;
D O I
10.1016/j.jcp.2015.04.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we develop a local discontinuous Galerkin (LDG) discretization of the (non)-isothermal Navier-Stokes-Korteweg (NSK) equations in conservative form. These equations are used to model the dynamics of a compressible fluid exhibiting liquidvaporphase transitions. The NSK-equations are closed with a Van der Waals equation of state and contain third order nonlinear derivative terms. These contributions frequently cause standard numerical methods to violate the energy dissipation relation and require additional stabilization terms to prevent numerical instabilities. In order to address these problems we first develop an LDG method for the isothermal NSK equations using discontinuous finite element spaces combined with a time-implicit Runge-Kutta integration method. Next, we extend the LDG discretization to the non-isothermal NSK equations. An important feature of the LDG discretizations presented in this article is that they are relatively simple, robust and do not require special regularization terms. Finally, computational experiments are provided to demonstrate the capabilities, accuracy and stability of the LDG discretizations. (C) 2015 Elsevier Inc. Allrightsreserved.
引用
收藏
页码:685 / 714
页数:30
相关论文
共 40 条
[1]   IMPLICATIONS OF VISCOSITY AND STRAIN-GRADIENT EFFECTS FOR THE KINETICS OF PROPAGATING PHASE BOUNDARIES IN SOLIDS [J].
ABEYARATNE, R ;
KNOWLES, JK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (05) :1205-1221
[2]   DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS FOR STIFF ODES [J].
ALEXANDER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (06) :1006-1021
[3]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[4]  
Batchelor G. K., 2000, An Introduction to Fluid Dynamics M
[5]   STABLE DISCRETIZATION OF A DIFFUSE INTERFACE MODEL FOR LIQUID-VAPOR FLOWS WITH SURFACE TENSION [J].
Braack, Malte ;
Prohl, Andreas .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (02) :404-423
[6]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[7]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[8]  
CASH JR, 1979, J I MATH APPL, V24, P293
[9]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[10]   Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows [J].
Coquel, F ;
Diehl, D ;
Merkle, C ;
Rohde, C .
NUMERICAL METHODS FOR HYPERBOLIC AND KINETIC PROBLEMS, 2005, 7 :239-270