Approaches to Parameter Estimation from Model Neurons and Biological Neurons

被引:1
作者
Nogaret, Alain [1 ]
机构
[1] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
基金
欧盟地平线“2020”;
关键词
data assimilation; parameter estimation; nonlinear optimization; ion channels; DYNAMICAL ESTIMATION; NETWORK; ASSIMILATION; VARIABILITY; SIMULATION; SYSTEMS; TIME; AGE;
D O I
10.3390/a15050168
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Model optimization in neuroscience has focused on inferring intracellular parameters from time series observations of the membrane voltage and calcium concentrations. These parameters constitute the fingerprints of ion channel subtypes and may identify ion channel mutations from observed changes in electrical activity. A central question in neuroscience is whether computational methods may obtain ion channel parameters with sufficient consistency and accuracy to provide new information on the underlying biology. Finding single-valued solutions in particular, remains an outstanding theoretical challenge. This note reviews recent progress in the field. It first covers well-posed problems and describes the conditions that the model and data need to meet to warrant the recovery of all the original parameters-even in the presence of noise. The main challenge is model error, which reflects our lack of knowledge of exact equations. We report on strategies that have been partially successful at inferring the parameters of rodent and songbird neurons, when model error is sufficiently small for accurate predictions to be made irrespective of stimulation.
引用
收藏
页数:14
相关论文
共 89 条
  • [1] Abarbanel H., 2013, PREDICTING FUTURE CO
  • [2] Abarbanel HDI, 2022, STATISTICAL PHYSICS OF DATA ASSIMILATION AND MACHINE LEARNING, P1, DOI 10.1017/9781009024846
  • [3] Data assimilation with regularized nonlinear instabilities
    Abarbanel, Henry D. I.
    Kostuk, Mark
    Whartenby, William
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (648) : 769 - 783
  • [4] Estimation of parameters in nonlinear systems using balanced synchronization
    Abarbanel, Henry D. I.
    Creveling, Daniel R.
    Jeanne, James M.
    [J]. PHYSICAL REVIEW E, 2008, 77 (01)
  • [5] Optimal solid state neurons
    Abu-Hassan, Kamal
    Taylor, Joseph D.
    Morris, Paul G.
    Donati, Elisa
    Bortolotto, Zuner A.
    Indiveri, Giacomo
    Paton, Julian F. R.
    Nogaret, Alain
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [6] Complex parameter landscape for a complex neuron model
    Achard, Pablo
    De Schutter, Erik
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (07) : 794 - 804
  • [7] GENERIC OBSERVABILITY OF DIFFERENTIABLE SYSTEMS
    AEYELS, D
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1981, 19 (05) : 595 - 603
  • [8] Observability and synchronization of neuron models
    Aguirre, Luis A.
    Portes, Leonardo L.
    Letellier, Christophe
    [J]. CHAOS, 2017, 27 (10)
  • [9] [Anonymous], 2008, Advances in neural information processing systems
  • [10] Statistical data assimilation for estimating electrophysiology simultaneously with connectivity within a biological neuronal network
    Armstrong, Eve
    [J]. PHYSICAL REVIEW E, 2020, 101 (01)