LOCAL RESTRICTION THEOREM AND MAXIMAL BOCHNER-RIESZ OPERATORS FOR THE DUNKL TRANSFORMS

被引:4
|
作者
Dai, Feng [1 ]
Ye, Wenrui [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Dunkl transforms; local restriction theorem; Bochner-Riesz means; almost everywhere convergence; weighted Littlewood-Paley inequality; SPACES;
D O I
10.1090/tran/7285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the Dunkl transforms associated with the weight functions h(k)(2)(x) = Pi(d)(j=1) vertical bar x(j)vertical bar(2kj), k(1), ... , k(d) >= 0 on R-d, it is proved that if p >= 2 + 1/lambda(k) and lambda(k) := d-1/2 + Sigma(d)(j=1) k(j), the maximal Bochner-Riesz operator B-*(delta) (h(k)(2); f) order delta > 0 is bounded on the space L-p(R-d; h(k)(2)dx) if and only if delta > delta(k)(p) := max{(2 lambda(k) + 1)(1/2 - 1/p) - 1/2, 0}. This extends a well known result of M. Christ for the classical Fourier transforms (Proc. Amer. Math. Soc. 95 (1985), 16-20). The proof relies on a new local restriction theorem for the Dunkl transforms, which is stronger than the corresponding global restriction theorem, but significantly more difficult to prove.
引用
收藏
页码:641 / 679
页数:39
相关论文
共 14 条
  • [1] Almost everywhere convergence of Bochner-Riesz means with critical index for Dunkl transforms
    Dai, Feng
    Ye, Wenrui
    JOURNAL OF APPROXIMATION THEORY, 2016, 205 : 43 - 59
  • [2] Almost everywhere convergence of the Bochner-Riesz means for the Dunkl transforms of weighted Lp-functions
    Ye, Wenrui
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (04) : 981 - 1006
  • [3] Maximal operators of commutators of Bochner-Riesz means with Lipschitz functions
    Gong, Shuli
    Ma, Bolin
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (03) : 427 - 447
  • [4] Maximal operators of commutators of Bochner-Riesz means with Lipschitz functions
    Shuli Gong
    Bolin Ma
    Frontiers of Mathematics in China, 2011, 6 : 427 - 447
  • [5] Maximal estimates for bilinear Bochner-Riesz means
    Jotsaroop, K.
    Shrivastava, Saurabh
    ADVANCES IN MATHEMATICS, 2022, 395
  • [6] The Commutators of Bochner-Riesz Operators for Hermite Operator
    Chen, Peng
    Lin, Xixi
    Yan, Lixin
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
  • [7] Almost everywhere convergence of Bochner-Riesz means for the Hermite operators
    Chen, Peng
    Xuan Thinh Duong
    He, Danqing
    Lee, Sanghyuk
    Yan, Lixin
    ADVANCES IN MATHEMATICS, 2021, 392
  • [8] WEAK BOUNDEDNESS OF OPERATOR-VALUED BOCHNER-RIESZ MEANS FOR THE DUNKL TRANSFORM
    Wang, Maofa
    Xu, Bang
    Hu, Jian
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (04): : 1064 - 1083
  • [9] A Weighted Maximal L2 Estimate of Operator-valued Bochner-Riesz Means
    Hong, Guixiang
    Zhang, Liyuan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (01) : 78 - 98
  • [10] Some Estimates for Maximal Bochner-Riesz Means on Musielak-Orlicz Hardy Spaces
    Li, Bo
    Liao, Minfeng
    Li, Baode
    MATHEMATICAL NOTES, 2020, 107 (3-4) : 618 - 627