The spatial clustering of Mid-IR selected sources in the GOODS fields

被引:0
|
作者
Gilli, R. [1 ]
Daddi, E. [2 ]
机构
[1] INAF, Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy
[2] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France
来源
AT THE EDGE OF THE UNIVERSE: LATEST RESULTS FROM THE DEEPEST ASTRONOMICAL SURVEYS | 2007年 / 380卷
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We measure the projected correlation function w(r(p)) for z similar to 0.8 star forming galaxies selected at 24 mu m in the GOODS fields. The best fit correlation length and slope for the combined sample are r(0) similar to 4.1 +/- 0.4 h(-1) Mpc and gamma = 1.5 +/- 0.1, respectively. A larger correlation length is found for objects of higher luminosity, with Luminous Infrared Galaxies (LIRGS, L-IR > 10(11) L-circle dot) reaching r(0) similar to 5.2 h(-1) Mpc. This implies that galaxies with larger star formation rate are hosted in progressively more massive halos. We compared our measurements with the predictions from semi-analytic models based on the Millennium simulation. On scales of the GOODS fields, the real sources appear significantly more strongly clustered than objects in the Millennium mock catalogs, suggesting that star formation at z similar to 0.8 is being hosted in more massive halos and denser environments than currently predicted by galaxy formation models.
引用
收藏
页码:409 / +
页数:2
相关论文
共 50 条
  • [21] Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications
    Sanghera, Jas S.
    Shaw, L. Brandon
    Aggarwal, Ishwar D.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (01) : 114 - 119
  • [22] New horizons for Supercontinuum light sources: From UV to Mid-IR
    Thomsen, Carsten L.
    Nielsen, Frederik D.
    Johansen, Jeppe
    Pedersen, Christian
    Moselund, Peter M.
    Moller, Uffe
    Sorensen, Simon T.
    Larsen, Casper
    Bang, Ole
    COMPLEX LIGHT AND OPTICAL FORCES VII, 2013, 8637
  • [23] Monolithic mid-IR array
    Oliver Graydon
    Nature Photonics, 2018, 12 : 58 - 58
  • [24] Characterizing Quasars in the Mid-IR
    Hill, Allison R.
    Gallagher, S. C.
    Deo, R. P.
    AGN WINDS IN CHARLESTON, 2012, 460 : 126 - 127
  • [25] Mid-IR optoacoustic microscopy
    Rita Strack
    Nature Methods, 2020, 17 : 251 - 251
  • [26] Mid-IR devices and materials
    Haywood, S
    IEE PROCEEDINGS-OPTOELECTRONICS, 1998, 145 (05): : 253 - 253
  • [27] Mid-IR Colloidal Nanocrystals
    Lhuillier, E.
    Keuleyan, S.
    Liu, H.
    Guyot-Sionnest, P.
    CHEMISTRY OF MATERIALS, 2013, 25 (08) : 1272 - 1282
  • [28] Advances in Mid-IR Materials
    Schunemann, Peter G.
    2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2007), VOLS 1-5, 2007, : 1195 - 1196
  • [29] Mid-IR optoacoustic microscopy
    Strack, Rita
    NATURE METHODS, 2020, 17 (03) : 251 - 251
  • [30] Mid-IR ectrosco Sensing
    Picqué N.
    Hänsch T.W.
    Optics and Photonics News, 2019, 30 (06): : 26 - 33