Nonlinear target count rate estimation in single-photon lidar due to first photon bias

被引:21
作者
Barton-Grimley, Rory A. [1 ]
Thayer, Jeffrey P. [1 ]
Hayman, Matthew [2 ]
机构
[1] Univ Colorado, Ann & HJ Smead Aerosp Engn Sci Dept, Boulder, CO 80309 USA
[2] Natl Ctr Atmospher Res, Earth Observing Lab, POB 3000, Boulder, CO 80307 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
CLOUD; ICE;
D O I
10.1364/OL.44.001249
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The use of time-tagging single-photon lidar for high-resolution ranging and backscattered count rate measurements requires special attention to mitigate biases and distortions typically not seen in full-waveform lidar sensors. Specifically, sub-pulse sampling and the presence of non-zero receiver dead-time generates an effect named first photon bias (FPB). FPB manifests itself as an intensity-induced ranging offset, previously documented, and a nonlinear count rate with integrated distribution distortions. These combined effects require special attention when integrating lidar point clouds to accurately estimate the backscattered signal strength and true range. This Letter indicates that correcting solely for the introduced range bias does not address the nonlinear shape distortions in the accumulated photon distribution. Analyses of distribution widths and estimated signal strengths must consider both effects. We present an analysis that demonstrates the cause and effect of the FPB on photon time-tagging integrated photon distributions using the Monte Carlo method, relates the modeled results to previously published data and statistics, and provides a framework for interpreting range and backscattered signal strength measurements from these sensors. (c) 2019 Optical Society of America
引用
收藏
页码:1249 / 1252
页数:4
相关论文
共 11 条
[1]   High resolution photon time-tagging lidar for atmospheric point cloud generation [J].
Barton-Grimley, Rory A. ;
Stillwell, Robert A. ;
Thayer, Jeffrey P. .
OPTICS EXPRESS, 2018, 26 (20) :26030-26044
[2]   Scanning, Multibeam, Single Photon Lidars for Rapid, Large Scale, High Resolution, Topographic and Bathymetric Mapping [J].
Degnan, John J. .
REMOTE SENSING, 2016, 8 (11)
[3]   CORRECTION FOR NONLINEAR PHOTON-COUNTING EFFECTS IN LIDAR SYSTEMS [J].
DONOVAN, DP ;
WHITEWAY, JA ;
CARSWELL, AI .
APPLIED OPTICS, 1993, 32 (33) :6742-6753
[4]  
Goodman J. W., 2015, STAT OPTICS
[5]  
Hayman M. J., 2011, THESIS
[6]   Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL) [J].
Kwok, R. ;
Markus, T. ;
Morison, J. ;
Palm, S. P. ;
Neumann, T. A. ;
Brunt, K. M. ;
Cook, W. B. ;
Hancock, D. W. ;
Cunningham, G. F. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2014, 31 (05) :1151-1168
[7]   The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation [J].
Markus, Thorsten ;
Neumann, Tom ;
Martino, Anthony ;
Abdalati, Waleed ;
Brunt, Kelly ;
Csatho, Beata ;
Farrell, Sinead ;
Fricker, Helen ;
Gardner, Alex ;
Harding, David ;
Jasinski, Michael ;
Kwok, Ron ;
Magruder, Lori ;
Lubin, Dan ;
Luthcke, Scott ;
Morison, James ;
Nelson, Ross ;
Neuenschwander, Amy ;
Palm, Stephen ;
Popescu, Sorin ;
Shum, C. K. ;
Schutz, Bob E. ;
Smith, Benjamin ;
Yang, Yuekui ;
Zwally, Jay .
REMOTE SENSING OF ENVIRONMENT, 2017, 190 :260-273
[8]   The Multiple Altimeter Beam Experimental Lidar (MABEL): An Airborne Simulator for the ICESat-2 Mission [J].
McGill, Matthew ;
Markus, Thorsten ;
Scott, V. Stanley ;
Neumann, Thomas .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2013, 30 (02) :345-352
[9]   Polarization lidar for shallow water depth measurement [J].
Mitchell, Steven ;
Thayer, Jeffrey P. ;
Hayman, Matthew .
APPLIED OPTICS, 2010, 49 (36) :6995-7000
[10]   Sea State Bias of ICESat in the Subarctic Seas [J].
Morison, J. ;
Kwok, R. ;
Dickinson, S. ;
Morison, D. ;
Peralta-Ferriz, C. ;
Andersen, R. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (08) :1144-1148