On Certain Probabilistic Properties of Polynomials over the Ring of p-adic Integers

被引:2
|
作者
Lei, Antonio [1 ]
Poulin, Antoine [1 ]
机构
[1] Univ Laval, Dept Math & Stat, 1045 Ave Med, Quebec City, PQ G1V 0A6, Canada
来源
AMERICAN MATHEMATICAL MONTHLY | 2020年 / 127卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
MSC;
D O I
10.1080/00029890.2020.1736468
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study several probabilistic properties of polynomials defined over the ring of p-adic integers under the Haar measure. First, we calculate the probability that a monic polynomial is separable, generalizing a result of Polak. Second, we introduce the notion of two polynomials being strongly coprime and calculate the probability of two monic polynomials being strongly coprime. Finally, we explain how our method can be used to extrapolate other probabilistic properties of polynomials over the ring of p-adic integers from polynomials defined over the integers modulo powers of p.
引用
收藏
页码:519 / 529
页数:11
相关论文
共 50 条