On Certain Probabilistic Properties of Polynomials over the Ring of p-adic Integers

被引:2
作者
Lei, Antonio [1 ]
Poulin, Antoine [1 ]
机构
[1] Univ Laval, Dept Math & Stat, 1045 Ave Med, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MSC;
D O I
10.1080/00029890.2020.1736468
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study several probabilistic properties of polynomials defined over the ring of p-adic integers under the Haar measure. First, we calculate the probability that a monic polynomial is separable, generalizing a result of Polak. Second, we introduce the notion of two polynomials being strongly coprime and calculate the probability of two monic polynomials being strongly coprime. Finally, we explain how our method can be used to extrapolate other probabilistic properties of polynomials over the ring of p-adic integers from polynomials defined over the integers modulo powers of p.
引用
收藏
页码:519 / 529
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1960, Trans. Amer. Math. Soc., DOI DOI 10.2307/1993378
[2]  
Benjamin A. T., 2007, Math. Mag., V80, P196
[3]   The arithmetic of polynomials in a Galois field [J].
Carlitz, L .
AMERICAN JOURNAL OF MATHEMATICS, 1932, 54 :39-50
[4]   A pentagonal number sieve [J].
Corteel, S ;
Savage, CD ;
Wilf, HS ;
Zeilberger, D .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 82 (02) :186-192
[5]   Degree distribution of the greatest common divisor of polynomials over Fq [J].
Gao, Zhicheng ;
Panario, Daniel .
RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (01) :26-37
[6]  
Hagedorn T. R., 2010, INVOLVE, V3, P223, DOI [10.2140/involve.2010.3.223, DOI 10.2140/INVOLVE.2010.3.223]
[7]   Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields [J].
Hou, Xiang-dong ;
Mullen, Gary L. .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (03) :304-331
[8]  
Ingraham E, 1971, LECT NOTES MATH, V181
[9]  
Koblitz Neal, 1984, GRADUATE TEXTS MATH, V58
[10]   Counting Separable Polynomials in Z/n[x] [J].
Polak, Jason K. C. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (02) :346-352