Hyperspectral estimation of canopy chlorophyll of winter wheat by using the optimized vegetation indices

被引:25
|
作者
Zhang, Xuan [1 ]
Sun, Hui [1 ,2 ]
Qiao, Xingxing [1 ]
Yan, Xiaobin [1 ]
Feng, Meichen [1 ]
Xiao, Lujie [1 ]
Song, Xiaoyan [1 ]
Zhang, Meijun [1 ]
Shafiq, Fahad [3 ]
Yang, Wude [1 ]
Wang, Chao [1 ]
机构
[1] Shanxi Agr Univ, Agr Coll, Jinzhong 030600, Peoples R China
[2] Shanxi Agr Univ, Coll Resources & Environm, Jinzhong 030600, Peoples R China
[3] Univ Lahore, Inst Mol Biol & Biotechnol, Lahore, Pakistan
基金
中国国家自然科学基金;
关键词
Hyperspectral; Vegetation index; Band optimization; Canopy chlorophyll content; Winter wheat; LEAF-AREA INDEX; NITROGEN CONCENTRATION; SPECTRAL REFLECTANCE; BIOMASS ESTIMATION; AGRICULTURE; EFFICIENCY; DENSITY; MAIZE; CORN;
D O I
10.1016/j.compag.2021.106654
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The vegetation indices (VIs) derived from the different band combinations can be used for monitoring crop quality traits. We conducted field experiments over two years time to investigate critical growth stages across four varieties and by using different nitrogen (N) application rates. In order to explore and evaluate the performance of different VIs on estimation of the canopy chlorophyll content (CCC) of winter wheat, the published and modified indices were optimized by using the random band combination through original spectrum (OS) and first-order differential (FD) treatment. The results showed that the first derivative processing improved the correlation between the red edge band and winter wheat CCC. The three-band VI can break the restriction of the number of bands on the extraction of target information, relieved the saturation problem of the dual-band VI, and improved the monitoring accuracy of winter wheat CCC. The index 2 x R1-R2-R3 was found to be the best VI for assessing the CCC of winter wheat based on the original and first-order differential spectrum (calibration R2 > 0.733), R-2 and RMSE of validation set were 0.688, 0.755 and 1.515, 1.336, respectively. In addition, the index expression formula R1/(R2 x R3) was recommended as a favorable choice for monitoring the agronomic traits of crop. Moreover, the VI is suggested to use at the red edge position band to monitor crop growth indicators. In conclusion, the use of VI can better monitor winter wheat CCC which could provide a theoretical basis for precision agriculture.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Estimating Winter Wheat Leaf Area Index From Ground and Hyperspectral Observations Using Vegetation Indices
    Xie, Qiaoyun
    Huang, Wenjiang
    Zhang, Bing
    Chen, Pengfei
    Song, Xiaoyu
    Pascucci, Simone
    Pignatti, Stefano
    Laneve, Giovanni
    Dong, Yingying
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (02) : 771 - 780
  • [32] Estimation of Winter Wheat Yield Using Multiple Temporal Vegetation Indices Derived from UAV-Based Multispectral and Hyperspectral Imagery
    Liu, Yu
    Sun, Liang
    Liu, Binhui
    Wu, Yongfeng
    Ma, Juncheng
    Zhang, Wenying
    Wang, Bianyin
    Chen, Zhaoyang
    REMOTE SENSING, 2023, 15 (19)
  • [33] Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices
    Wu, Chaoyang
    Niu, Zheng
    Tang, Quan
    Huang, Wenjiang
    Rivard, Benoit
    Feng, Jilu
    AGRICULTURAL AND FOREST METEOROLOGY, 2009, 149 (6-7) : 1015 - 1021
  • [34] Hyperspectral Estimation Model of Chlorophyll Content in Different Leaf Positions of Winter Wheat
    Ma, Chunyan
    Wang, Yilin
    Zhai, Liting
    Guo, Fuchen
    Li, Changchun
    Niu, Haipeng
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (06): : 217 - 225
  • [35] Estimation of Winter Wheat Canopy Chlorophyll Content Based on Canopy Spectral Transformation and Machine Learning Method
    Chen, Xiaokai
    Li, Fenling
    Shi, Botai
    Fan, Kai
    Li, Zhenfa
    Chang, Qingrui
    AGRONOMY-BASEL, 2023, 13 (03):
  • [36] Canopy Vegetation Indices from In situ Hyperspectral Data to Assess Plant Water Status of Winter Wheat under Powdery Mildew Stress
    Feng, Wei
    Qi, Shuangli
    Heng, Yarong
    Zhou, Yi
    Wu, Yapeng
    Liu, Wandai
    He, Li
    Li, Xiao
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [37] Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice
    Tian, Yong-Chao
    Gu, Kai-Jian
    Chu, Xu
    Yao, Xia
    Cao, Wei-Xing
    Zhu, Yan
    PLANT AND SOIL, 2014, 376 (1-2) : 193 - 209
  • [38] Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice
    Yong-Chao Tian
    Kai-Jian Gu
    Xu Chu
    Xia Yao
    Wei-Xing Cao
    Yan Zhu
    Plant and Soil, 2014, 376 : 193 - 209
  • [39] Estimation of leaf chlorophyll content in winter wheat using variable importance for projection (VIP) with hyperspectral data
    He, Peng
    Xu, Xingang
    Zhang, Baolei
    Li, Zhenhai
    Feng, Haikuan
    Yang, Guijun
    Zhang, Yongfeng
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII, 2015, 9637
  • [40] Biangular-Combined Vegetation Indices to Improve the Estimation of Canopy Chlorophyll Content in Wheat Using Multi-Angle Experimental and Simulated Spectral Data
    Kong, Weiping
    Huang, Wenjiang
    Ma, Lingling
    Li, Chuanrong
    Tang, Lingli
    Guo, Jiawei
    Zhou, Xianfeng
    Casa, Raffaele
    FRONTIERS IN PLANT SCIENCE, 2022, 13