Hyperspectral estimation of canopy chlorophyll of winter wheat by using the optimized vegetation indices

被引:25
|
作者
Zhang, Xuan [1 ]
Sun, Hui [1 ,2 ]
Qiao, Xingxing [1 ]
Yan, Xiaobin [1 ]
Feng, Meichen [1 ]
Xiao, Lujie [1 ]
Song, Xiaoyan [1 ]
Zhang, Meijun [1 ]
Shafiq, Fahad [3 ]
Yang, Wude [1 ]
Wang, Chao [1 ]
机构
[1] Shanxi Agr Univ, Agr Coll, Jinzhong 030600, Peoples R China
[2] Shanxi Agr Univ, Coll Resources & Environm, Jinzhong 030600, Peoples R China
[3] Univ Lahore, Inst Mol Biol & Biotechnol, Lahore, Pakistan
基金
中国国家自然科学基金;
关键词
Hyperspectral; Vegetation index; Band optimization; Canopy chlorophyll content; Winter wheat; LEAF-AREA INDEX; NITROGEN CONCENTRATION; SPECTRAL REFLECTANCE; BIOMASS ESTIMATION; AGRICULTURE; EFFICIENCY; DENSITY; MAIZE; CORN;
D O I
10.1016/j.compag.2021.106654
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The vegetation indices (VIs) derived from the different band combinations can be used for monitoring crop quality traits. We conducted field experiments over two years time to investigate critical growth stages across four varieties and by using different nitrogen (N) application rates. In order to explore and evaluate the performance of different VIs on estimation of the canopy chlorophyll content (CCC) of winter wheat, the published and modified indices were optimized by using the random band combination through original spectrum (OS) and first-order differential (FD) treatment. The results showed that the first derivative processing improved the correlation between the red edge band and winter wheat CCC. The three-band VI can break the restriction of the number of bands on the extraction of target information, relieved the saturation problem of the dual-band VI, and improved the monitoring accuracy of winter wheat CCC. The index 2 x R1-R2-R3 was found to be the best VI for assessing the CCC of winter wheat based on the original and first-order differential spectrum (calibration R2 > 0.733), R-2 and RMSE of validation set were 0.688, 0.755 and 1.515, 1.336, respectively. In addition, the index expression formula R1/(R2 x R3) was recommended as a favorable choice for monitoring the agronomic traits of crop. Moreover, the VI is suggested to use at the red edge position band to monitor crop growth indicators. In conclusion, the use of VI can better monitor winter wheat CCC which could provide a theoretical basis for precision agriculture.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Retrieving Leaf and Canopy Water Content of Winter Wheat Using Vegetation Water Indices
    Zhang, Chao
    Pattey, Elizabeth
    Liu, Jiangui
    Cai, Huanjie
    Shang, Jiali
    Dong, Taifeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (01) : 112 - 126
  • [12] Estimation of Chlorophyll Content in Winter Wheat Based on UAV Hyperspectral
    Feng Hai-kuan
    Tao Hui-lin
    Zhao Yu
    Yang Fu-qin
    Fan Yi-guang
    Yang Gui-jun
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42 (11) : 3575 - 3580
  • [13] Estimation of Canopy Chlorophyll Content Using Hyperspectral Data
    Dong Jing-jing
    Wang Li
    Niu Zheng
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29 (11) : 3003 - 3006
  • [14] A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements
    Bannari, Abderrazak
    Khurshid, K. Shahid
    Staenz, Karl
    Schwarz, John W.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3063 - 3074
  • [15] Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression
    Li, Fei
    Mistele, Bodo
    Hu, Yuncai
    Chen, Xinping
    Schmidhalter, Urs
    EUROPEAN JOURNAL OF AGRONOMY, 2014, 52 : 198 - 209
  • [16] HYPERSPECTRAL VEGETATION INDICES FOR CROP CHLOROPHYLL ESTIMATION: ASSESSMENT, MODELING AND VALIDATION
    Lin, Peirong
    Qin, Qiming
    Dong, Heng
    Meng, Qingye
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 4841 - 4844
  • [17] A novel two-step method for winter wheat-leaf chlorophyll content estimation using a hyperspectral vegetation index
    Jiao, Quanjun
    Zhang, Bing
    Liu, Jiangui
    Liu, Liangyun
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (21) : 7363 - 7375
  • [18] Winter Wheat GPC Estimation Based on Leaf and Canopy Chlorophyll Parameters
    Song Xiao-yu
    Wang Ji-hua
    Yang Gui-jun
    Cui Bei
    Chang Hong
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34 (07) : 1917 - 1921
  • [19] Hyperspectral indices for leaf and pixel chlorophyll estimation in open-canopy tree
    Zhao, Jin
    Chen, Xi
    Japper, Guli
    Chang, Huaitian
    Ma, Zhongguo
    Duan, Yuanbin
    GEOINFORMATICS 2007: REMOTELY SENSED DATA AND INFORMATION, PTS 1 AND 2, 2007, 6752
  • [20] Estimation of chlorophyll content in plant leaves and canopy from hyperspectral vegetation indexes
    Sagalovich, V.N.
    Falkov, E.Ya.
    Tsareva, T.I.
    Issledovanie Zemli iz Kosmosa, 2002, (06): : 81 - 85