rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated Tool for Genome-wide Association Study

被引:563
作者
Yin, Lilin [1 ,2 ,3 ]
Zhang, Haohao [4 ]
Tang, Zhenshuang [1 ,2 ,3 ]
Xu, Jingya [1 ,2 ,3 ]
Yin, Dong [1 ,2 ,3 ]
Zhang, Zhiwu [5 ]
Yuan, Xiaohui [4 ]
Zhu, Mengjin [1 ,2 ,3 ]
Zhao, Shuhong [1 ,2 ,3 ]
Li, Xinyun [1 ,2 ,3 ]
Liu, Xiaolei [1 ,2 ,3 ]
机构
[1] Huazhong Agr Univ, Key Lab Agr Anim Genet Breeding & Reprod, Minist Educ, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Coll Anim Sci & Technol, Wuhan 430070, Peoples R China
[3] Huazhong Agr Univ, Key Lab Swine Genet & Breeding, Minist Agr, Wuhan 430070, Peoples R China
[4] Wuhan Univ Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R China
[5] Washington State Univ, Dept Crop & Soil Sci, Pullman, WA 99164 USA
基金
国家重点研发计划; 中国国家自然科学基金; 美国国家科学基金会;
关键词
Memory-efficient; Visualization-enhanced; Parallel-accelerated; rMVP; GWAS; MIXED-MODEL APPROACH; SOFTWARE; TRAITS; SET;
D O I
10.1016/j.gpb.2020.10.007
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Along with the develoipment of high-throughput sequencing technologies, both sample size and SNP number are increasing rapidly in genome-wide association studies (GWAS), and the associated computation is more challenging than ever. Here, we present a memory-efficient, visualization-enhanced, and parallel-accelerated R package called "rMVP" to address the need for improved GWAS computation. rMVP can 1) effectively process large GWAS data, 2) rapidly evaluate population structure, 3) efficiently estimate variance components by Efficient Mixed-Model Association eX-pedited (EMMAX), Factored Spectrally Transformed Linear Mixed Models (FaST-LMM), and Haseman-Elston (HE) regression algorithms, 4) implement parallel-accelerated association tests of markers using general linear model (GLM), mixed linear model (MLM), and fixed and random model circulating probability unification (FarmCPU) methods, 5) compute fast with a globally efficient design in the GWAS processes, and 6) generate various visualizations of GWAS-related information. Accelerated by block matrix multiplication strategy and multiple threads, the association test methods embedded in rMVP are significantly faster than PLINK, GEMMA, and FarmCPU_pkg. rMVP is freely available at https:// github.com/xiaolei-lab/rMVP.
引用
收藏
页码:619 / 628
页数:10
相关论文
共 28 条
  • [1] GenABEL: an R library for genome-wide association analysis
    Aulchenko, Yurii S.
    Ripke, Stephan
    Isaacs, Aaron
    Van Duijn, Cornelia M.
    [J]. BIOINFORMATICS, 2007, 23 (10) : 1294 - 1296
  • [2] TASSEL: software for association mapping of complex traits in diverse samples
    Bradbury, Peter J.
    Zhang, Zhiwu
    Kroon, Dallas E.
    Casstevens, Terry M.
    Ramdoss, Yogesh
    Buckler, Edward S.
    [J]. BIOINFORMATICS, 2007, 23 (19) : 2633 - 2635
  • [3] A One-Penny Imputed Genome from Next-Generation Reference Panels
    Browning, Brian L.
    Zhou, Ying
    Browning, Sharon R.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2018, 103 (03) : 338 - 348
  • [4] Exact confidence intervals for a variance ratio (or heritability) in a mixed linear model
    Burch, BD
    Iyer, HK
    [J]. BIOMETRICS, 1997, 53 (04) : 1318 - 1333
  • [5] Casale FP, 2015, NAT METHODS, V12, P755, DOI [10.1038/nmeth.3439, 10.1038/NMETH.3439]
  • [6] Kane MJ, 2013, J STAT SOFTW, V55, P1
  • [7] Variance component model to account for sample structure in genome-wide association studies
    Kang, Hyun Min
    Sul, Jae Hoon
    Service, Susan K.
    Zaitlen, Noah A.
    Kong, Sit-yee
    Freimer, Nelson B.
    Sabatti, Chiara
    Eskin, Eleazar
    [J]. NATURE GENETICS, 2010, 42 (04) : 348 - U110
  • [8] A mixed-model approach for genome-wide association studies of correlated traits in structured populations
    Korte, Arthur
    Vilhjalmsson, Bjarni J.
    Segura, Vincent
    Platt, Alexander
    Long, Quan
    Nordborg, Magnus
    [J]. NATURE GENETICS, 2012, 44 (09) : 1066 - +
  • [9] Enrichment of statistical power for genome-wide association studies
    Li, Meng
    Liu, Xiaolei
    Bradbury, Peter
    Yu, Jianming
    Zhang, Yuan-Ming
    Todhunter, Rory J.
    Buckler, Edward S.
    Zhang, Zhiwu
    [J]. BMC BIOLOGY, 2014, 12
  • [10] GAPIT: genome association and prediction integrated tool
    Lipka, Alexander E.
    Tian, Feng
    Wang, Qishan
    Peiffer, Jason
    Li, Meng
    Bradbury, Peter J.
    Gore, Michael A.
    Buckler, Edward S.
    Zhang, Zhiwu
    [J]. BIOINFORMATICS, 2012, 28 (18) : 2397 - 2399