Fluidization of collisionless plasma turbulence

被引:42
|
作者
Meyrand, Romain [1 ,2 ]
Kanekar, Anjor [3 ,4 ]
Dorland, William [3 ,5 ]
Schekochihin, Alexander A. [5 ,6 ]
机构
[1] Ecole Polytech, Lab Phys Plasmas, F-91128 Palaiseau, France
[2] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] Palantir Technol, London W1D 3QW, England
[5] Univ Oxford, Clarendon Lab, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
[6] Univ Oxford Merton Coll, Oxford OX1 4JD, England
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
plasma turbulence; Landau damping; plasma echo; solar wind; ADVECTION-DOMINATED ACCRETION; LANDAU FLUID MODEL; SOLAR-WIND; MAGNETOHYDRODYNAMIC TURBULENCE; ASTROPHYSICAL GYROKINETICS; 3-DIMENSIONAL ANISOTROPY; EQUATIONS; SPACE; INTERMITTENCY; SIMULATIONS;
D O I
10.1073/pnas.1813913116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a collisionless, magnetized plasma, particles may stream freely along magnetic field lines, leading to "phase mixing" of their distribution function and consequently, to smoothing out of any "compressive" fluctuations (of density, pressure, etc.). This rapid mixing underlies Landau damping of these fluctuations in a quiescent plasma-one of the most fundamental physical phenomena that makes plasma different from a conventional fluid. Nevertheless, broad power law spectra of compressive fluctuations are observed in turbulent astrophysical plasmas (most vividly, in the solar wind) under conditions conducive to strong Landau damping. Elsewhere in nature, such spectra are normally associated with fluid turbulence, where energy cannot be dissipated in the inertial-scale range and is, therefore, cascaded from large scales to small. By direct numerical simulations and theoretical arguments, it is shown here that turbulence of compressive fluctuations in collisionless plasmas strongly resembles one in a collisional fluid and does have broad power law spectra. This "fluidization" of collisionless plasmas occurs, because phase mixing is strongly suppressed on average by "stochastic echoes," arising due to nonlinear advection of the particle distribution by turbulent motions. Other than resolving the long-standing puzzle of observed compressive fluctuations in the solar wind, our results suggest a conceptual shift for understanding kinetic plasma turbulence generally: rather than being a system where Landau damping plays the role of dissipation, a collisionless plasma is effectively dissipationless, except at very small scales. The universality of "fluid" turbulence physics is thus reaffirmed even for a kinetic, collisionless system.
引用
收藏
页码:1185 / 1194
页数:10
相关论文
共 50 条
  • [31] TURBULENCE AND PROTON-ELECTRON HEATING IN KINETIC PLASMA
    Matthaeus, William H.
    Parashar, Tulasi N.
    Wan, Minping
    Wu, P.
    ASTROPHYSICAL JOURNAL LETTERS, 2016, 827 (01)
  • [32] A Look at Phase Space Intermittency in Magnetized Plasma Turbulence
    Teaca, Bogdan
    Navarro, Alejandro Banon
    Told, Daniel
    Goerler, Tobias
    Plunk, Gabriel
    Hatch, David R.
    Jenko, Frank
    ASTROPHYSICAL JOURNAL, 2019, 886 (01)
  • [33] A RESTRICTION ON SHOCKS IN COLLISIONLESS PLASMA
    Schaeffer, Jack
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) : 2767 - 2797
  • [34] Diagnosing collisionless energy transfer using field-particle correlations: gyrokinetic turbulence
    Klein, Kristopher G.
    Howes, Gregory G.
    TenBarge, Jason M.
    JOURNAL OF PLASMA PHYSICS, 2017, 83 (04)
  • [35] Plasma Turbulence in the Local Bubble
    Spangler, Steven R.
    SPACE SCIENCE REVIEWS, 2009, 143 (1-4) : 277 - 290
  • [36] Magneto-immutable turbulence in weakly collisional plasmas
    Squire, J.
    Schekochihin, A. A.
    Quataert, E.
    Kunz, M. W.
    JOURNAL OF PLASMA PHYSICS, 2019, 85 (01)
  • [37] Pressure anisotropy and viscous heating in weakly collisional plasma turbulence
    Squire, J.
    Kunz, M. W.
    Arzamasskiy, L.
    Johnston, Z.
    Quataert, E.
    Schekochihin, A. A.
    JOURNAL OF PLASMA PHYSICS, 2023, 89 (04)
  • [38] PROPINQUITY OF CURRENT AND VORTEX STRUCTURES: EFFECTS ON COLLISIONLESS PLASMA HEATING
    Parashar, Tulasi N.
    Matthaeus, William H.
    ASTROPHYSICAL JOURNAL, 2016, 832 (01)
  • [39] Phase space transport in the interaction between shocks and plasma turbulence
    Trotta, Domenico
    Valentini, Francesco
    Burgess, David
    Servidio, Sergio
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (21)
  • [40] The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas
    Karimabadi, H.
    Roytershteyn, V.
    Vu, H. X.
    Omelchenko, Y. A.
    Scudder, J.
    Daughton, W.
    Dimmock, A.
    Nykyri, K.
    Wan, M.
    Sibeck, D.
    Tatineni, M.
    Majumdar, A.
    Loring, B.
    Geveci, B.
    PHYSICS OF PLASMAS, 2014, 21 (06)