Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure

被引:380
作者
Losurdo, Maria [1 ]
Giangregorio, Maria Michela [1 ]
Capezzuto, Pio [1 ]
Bruno, Giovanni [1 ]
机构
[1] IMIP CNR, Inst Inorgan Methodol & Plasmas, I-70126 Bari, Italy
关键词
ACTIVATED DISSOCIATIVE CHEMISORPTION; MOLECULAR-BEAM; PRESSURE GAP; CH4; METHANE; CARBON; DEPOSITION; NI(111); NI; DIFFUSION;
D O I
10.1039/c1cp22347j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the chemical vapor deposition (CVD) kinetics of graphene growth is important for advancing graphene processing and achieving better control of graphene thickness and properties. In the perspective of improving large area graphene quality, we have investigated in real-time the CVD kinetics using CH4-H-2 precursors on both polycrystalline copper and nickel. We highlighted the role of hydrogen in differentiating the growth kinetics and thickness of graphene on copper and nickel. Specifically, the growth kinetics and mechanism is framed in the competitive dissociative chemisorption of H-2 and dehydrogenating chemisorption of CH4, and in the competition of the in-diffusion of carbon and hydrogen, being hydrogen in-diffusion faster in copper than nickel, while carbon diffusion is faster in nickel than copper. It is shown that hydrogen acts as an inhibitor for the CH4 dehydrogenation on copper, contributing to suppress deposition onto the copper substrate, and degrades quality of graphene. Additionally, the evidence of the role of hydrogen in forming C-H out of plane defects in CVD graphene on Cu is also provided. Conversely, resurfacing recombination of hydrogen aids CH4 decomposition in the case of Ni. Understanding better and providing other elements to the kinetics of graphene growth is helpful to define the optimal CH4/H-2 ratio, which ultimately can contribute to improve graphene layer thickness uniformity even on polycrystalline substrates.
引用
收藏
页码:20836 / 20843
页数:8
相关论文
共 41 条
[1]   THE INTERACTION OF CH4 AT HIGH-TEMPERATURES WITH CLEAN AND OXYGEN PRECOVERED CU(100) [J].
ALSTRUP, I ;
CHORKENDORFF, I ;
ULLMANN, S .
SURFACE SCIENCE, 1992, 264 (1-2) :95-102
[2]   First-principles study of methane dehydrogenation on a bimetallic Cu/Ni(111) surface [J].
An, Wei ;
Zeng, X. C. ;
Turner, C. Heath .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (17)
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]   Hydrogen transport in nickel (111) [J].
Baer, R ;
Zeiri, Y ;
Kosloff, R .
PHYSICAL REVIEW B, 1997, 55 (16) :10952-10974
[5]   A hydrogen inhibition model of carbon deposition from light hydrocarbons [J].
Becker, A ;
Hu, Z ;
Hüttinger, KJ .
FUEL, 2000, 79 (13) :1573-1580
[6]   KINETICS OF THE ACTIVATED DISSOCIATIVE ADSORPTION OF METHANE ON THE LOW INDEX PLANES OF NICKEL SINGLE-CRYSTAL SURFACES [J].
BEEBE, TP ;
GOODMAN, DW ;
KAY, BD ;
YATES, JT .
JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (04) :2305-2315
[7]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[8]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[9]   Contrasting Behavior of Carbon Nucleation in the Initial Stages of Graphene Epitaxial Growth on Stepped Metal Surfaces [J].
Chen, Hua ;
Zhu, Wenguang ;
Zhang, Zhenyu .
PHYSICAL REVIEW LETTERS, 2010, 104 (18)
[10]   Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing [J].
Cho, Jongweon ;
Gao, Li ;
Tian, Jifa ;
Cao, Helin ;
Wu, Wei ;
Yu, Qingkai ;
Yitamben, Esmeralda N. ;
Fisher, Brandon ;
Guest, Jeffrey R. ;
Chen, Yong P. ;
Guisinger, Nathan P. .
ACS NANO, 2011, 5 (05) :3607-3613