Automorphism groups of finite dimensional simple algebras

被引:11
作者
Gordeev, NL [1 ]
Popov, VL
机构
[1] Russian State Pedag Univ, St Petersburg, Russia
[2] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
关键词
D O I
10.4007/annals.2003.158.1041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if a field k contains sufficiently many elements (for instance, if k is infinite), and K is an algebraically closed field containing k, then every linear algebraic k-group over K is k-isomorphic to Aut(A circle times(k) K), where A is a finite dimensional simple algebra over k.
引用
收藏
页码:1041 / 1065
页数:25
相关论文
共 25 条
[1]  
[Anonymous], 1987, GRADUATE TEXTS MATH
[2]  
[Anonymous], 1998, C PUBL AM MATH SOC
[3]   EXTENSIONS OF REPRESENTATIONS OF ALGEBRAIC LINEAR GROUPS [J].
BIALYNICKIBIRUL.A ;
HOCHSCHILD, G ;
MOSTOW, GD .
AMERICAN JOURNAL OF MATHEMATICS, 1963, 85 (01) :131-&
[4]  
Borel A., 1991, LINEAR ALGEBRAIC GRO, V126
[5]  
DIXMIER J, 1984, J REINE ANGEW MATH, V346, P110
[6]   ON TILTING MODULES FOR ALGEBRAIC-GROUPS [J].
DONKIN, S .
MATHEMATISCHE ZEITSCHRIFT, 1993, 212 (01) :39-60
[7]   AUTOMORPHISM-GROUPS OF FIELDS [J].
DUGAS, M ;
GOBEL, R .
MANUSCRIPTA MATHEMATICA, 1994, 85 (3-4) :227-242
[9]   EACH FINITE-GROUP IS AN AUTOMORPHISM GROUP OF A FINITE EXPANSION K/Q [J].
GEYER, WD .
ARCHIV DER MATHEMATIK, 1983, 41 (02) :139-142
[10]   THE FRIENDLY GIANT [J].
GRIESS, RL .
INVENTIONES MATHEMATICAE, 1982, 69 (01) :1-102