Carleman estimates and the contraction principle for an inverse source problem for nonlinear hyperbolic equations

被引:10
作者
Nguyen, Loc H. [1 ]
Klibanov, Michael, V [1 ]
机构
[1] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
关键词
numerical methods; Carleman estimate; contraction principle; globally convergent numerical method; nonlinear hyperbolic equations; QUASI-REVERSIBILITY METHOD; THERMOACOUSTIC TOMOGRAPHY; PHOTOACOUSTIC TOMOGRAPHY; TIME-REVERSAL; RECONSTRUCTION ALGORITHMS; SCATTERING PROBLEM; FIXED-ENERGY; CONVEXIFICATION; CONVERGENCE; CONVEXITY;
D O I
10.1088/1361-6420/ac4d09
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this paper is to solve an inverse source problem for a general nonlinear hyperbolic equation. Combining the quasi-reversibility method and a suitable Carleman weight function, we define a map of which fixed point is the solution to the inverse problem. To find this fixed point, we define a recursive sequence with an arbitrary initial term by the same manner as in the classical proof of the contraction principle. Applying a Carleman estimate, we show that the sequence above converges to the desired solution with the exponential rate. Therefore, our new method can be considered as an analog of the contraction principle. We rigorously study the stability of our method with respect to noise. Numerical examples are presented.
引用
收藏
页数:19
相关论文
共 56 条
  • [1] Thermoacoustic tomography for an integro-differential wave equation modeling attenuation
    Acosta, Sebastian
    Palacios, Benjamin
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) : 1984 - 2010
  • [2] Photoacoustic Imaging for Attenuating Acoustic Media
    Ammari, Habib
    Bretin, Elie
    Jugnon, Vincent
    Wahab, Abdul
    [J]. MATHEMATICAL MODELING IN BIOMEDICAL IMAGING II: OPTICAL, ULTRASOUND, AND OPTO-ACOUSTIC TOMOGRAPHIES, 2012, 2035 : 57 - 84
  • [3] Ammari H, 2011, CONTEMP MATH, V548, P151
  • [4] Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs
    Bakushinskii, Anatoly B.
    Klibanov, Michael V.
    Koshev, Nikolaj A.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 34 : 201 - 224
  • [5] CARLEMAN-BASED RECONSTRUCTION ALGORITHM FOR WAVES
    Baudouin, Lucie
    De Buhan, Maya
    Ervedoza, Sylvain
    Osses, Axel
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (02) : 998 - 1039
  • [6] CONVERGENT ALGORITHM BASED ON CARLEMAN ESTIMATES FOR THE RECOVERY OF A POTENTIAL IN THE WAVE EQUATION
    Baudouin, Lucie
    de Buhan, Maya
    Ervedoza, Sylvain
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) : 1578 - 1613
  • [7] Global Carleman Estimates for Waves and Applications
    Baudouin, Lucie
    de Buhan, Maya
    Ervedoza, Sylvain
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (05) : 823 - 859
  • [8] Beilina L, 2012, APPROXIMATE GLOBAL C, DOI [DOI 10.1007/978-1-4419-7805-9, 10.1007/978-1-4419-7805-9]
  • [9] Brezis H., 2011, Functional analysis. Universitex, DOI DOI 10.1007/978-0-387-70914-7
  • [10] Compensation of acoustic attenuation for high resolution photoacoustic imaging with line detectors
    Burgholzer, Peter
    Gruen, Hubert
    Haltmeier, Markus
    Nuster, Robert
    Paltauf, Guenther
    [J]. PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2007, 2007, 6437