MetaMass, a tool for meta-analysis of subcellular proteomics data

被引:24
|
作者
Lund-Johansen, Fridtjof [1 ,2 ]
Carrillo, Daniel de la Rosa [1 ,3 ]
Mehta, Adi [1 ,4 ]
Sikorski, Krzysztof [1 ,2 ]
Inngjerdingen, Marit [1 ]
Kalina, Tomas [5 ,6 ]
Roysland, Kjetil [7 ]
de Souza, Gustavo Antonio [1 ]
Bradbury, Andrew R. M. [8 ]
Lecrevisse, Quentin [9 ,10 ,11 ,12 ]
Stuchly, Jan [5 ,6 ]
机构
[1] Oslo Univ Hosp, Dept Immunol, Oslo, Norway
[2] Univ Oslo, KG Jebsen Ctr Canc Immunotherapy, Oslo, Norway
[3] Oslo Univ Hosp, Dept Dermatol, Oslo, Norway
[4] Univ Oslo, KG Jebsen Inflammat Res Ctr, Oslo, Norway
[5] Charles Univ Prague, Fac Med 2, Dept Pediat Hematol & Oncol, Childhood Leukemia Invest Prague CLIP, Prague, Czech Republic
[6] Univ Hosp Motol, Prague, Czech Republic
[7] Univ Oslo, Inst Basic Med Sci, Dept Biostat, Fac Med, Oslo, Norway
[8] Los Alamos Natl Lab, Div B, Los Alamos, NM USA
[9] Univ Salamanca, Canc Res Ctr IBMCC, CSIC USAL, Salamanca, Spain
[10] Univ Salamanca, Inst Biomed Res Salamanca IBSAL, Salamanca, Spain
[11] Univ Salamanca, NUCLEUS, Salamanca, Spain
[12] Univ Salamanca, Dept Med, Salamanca, Spain
关键词
NUCLEOCYTOPLASMIC TRAFFICKING; REVEALS; CELLS;
D O I
10.1038/nmeth.3967
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We report a tool for the analysis of subcellular proteomics data, called MetaMass, based on the use of standardized lists of subcellular markers. We analyzed data from 11 studies using MetaMass, mapping the subcellular location of 5,970 proteins. Our analysis revealed large variations in the performance of subcellular fractionation protocols as well as systematic biases in protein annotation databases. The Excel and R versions of MetaMass should enhance transparency and reproducibility in subcellular proteomics.
引用
收藏
页码:837 / +
页数:6
相关论文
共 50 条
  • [41] CancerEST: a web-based tool for automatic meta-analysis of public EST data
    Feichtinger, Julia
    McFarlane, Ramsay J.
    Larcombe, Lee D.
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2014,
  • [42] Comparing the Overall Result and Interaction in Aggregate Data Meta-Analysis and Individual Patient Data Meta-Analysis
    Huang, Yafang
    Tang, Jinling
    Tam, Wilson Wai-san
    Mao, Chen
    Yuan, Jinqiu
    Di, Mengyang
    Yang, Zuyao
    MEDICINE, 2016, 95 (14)
  • [43] A Framework for Meta-Analysis of Cytometry Data
    Jujjavarapu, Chethan
    Hughey, Jacob
    Gherardini, Federico
    Bruggner, Robert
    Nolan, Garry
    Bhattacharya, Sanchita
    Butte, Atul
    JOURNAL OF IMMUNOLOGY, 2016, 196
  • [44] NETWORK META-ANALYSIS OF LONGITUDINAL DATA
    Vieira, M. C.
    Cope, S.
    Jansen, J. P.
    VALUE IN HEALTH, 2013, 16 (03) : A15 - A15
  • [45] Individual participant data in meta-analysis
    Spineli, Loukia M.
    Pandis, Nikolaos
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2021, 159 (06) : 868 - 870
  • [46] Bayesian Meta-Analysis of Observational Data
    McCandless, Lawrence C.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2011, 20 : S355 - S355
  • [47] Missing outcome data in meta-analysis
    Mavridis, Dimitris
    Chaimani, Anna
    Efthimiou, Orestis
    Salanti, Georgia
    EVIDENCE-BASED MENTAL HEALTH, 2018, 21 (03) : 123 - 123
  • [48] Meta-analysis in the era of big data
    Silva-Fernandez, Lucia
    Carmona, Loreto
    CLINICAL RHEUMATOLOGY, 2019, 38 (08) : 2027 - 2028
  • [49] Meta-analysis of Functional Neuroimaging Data
    Chawla, Manisha
    Miyapuram, Krishna P.
    2013 IEEE SECOND INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2013, : 256 - 260
  • [50] Reductionism and variability in data: A meta-analysis
    Sapolsky, R
    Balt, S
    PERSPECTIVES IN BIOLOGY AND MEDICINE, 1996, 39 (02) : 193 - 203