Mixed-Norm Amalgam Spaces and Their Predual

被引:6
作者
Zhang, Houkun [1 ]
Zhou, Jiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
mixed norm; amalgam spaces; predual; fractional integral operators; commutators; LP; REPRESENTATION; COMMUTATORS; LEBESGUE; THEOREM;
D O I
10.3390/sym14010074
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce mixed-norm amalgam spaces (L-p & RARR;,L-s & RARR;)(alpha)(R-n) and prove the boundedness of maximal function. Then, the dilation argument obtains the necessary and sufficient conditions of fractional integral operators' boundedness. Furthermore, the strong estimates of linear commutators [b,I-gamma] generated by b & ISIN;BMO(R-n) and I gamma on mixed-norm amalgam spaces (L-p & RARR;,L-s & RARR;)(alpha)(R-n) are established as well. In order to obtain the necessary conditions of fractional integral commutators' boundedness, we introduce mixed-norm Wiener amalgam spaces (L-p & RARR;,L-s & RARR;)(R-n). We obtain the necessary and sufficient conditions of fractional integral commutators' boundedness by the duality theory. The necessary conditions of fractional integral commutators' boundedness are a new result even for the classical amalgam spaces. By the equivalent norm and the operators St(r)((p))(f)(x), we study the duality theory of mixed-norm amalgam spaces, which makes our proof easier. In particular, note that predual of the primal space is not obtained and the predual of the equivalent space does not mean the predual of the primal space.
引用
收藏
页数:27
相关论文
共 37 条
[1]   On the Hormander-Mihlin theorem for mixed-norm Lebesgue spaces [J].
Antonic, Nenad ;
Ivec, Ivan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) :176-199
[2]   SPACES LP, WITH MIXED NORM [J].
BENEDEK, A ;
PANZONE, R .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (03) :301-&
[3]  
Besov O.V., 1996, INTEGRAL REPRESENTAT, V2nd ed., P480
[4]   Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces [J].
Burenkov, VI ;
Guliyev, HV .
STUDIA MATHEMATICA, 2004, 163 (02) :157-176
[5]   A NOTE ON COMMUTATORS [J].
CHANILLO, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (01) :7-16
[6]  
Chen T., 2017, 171201064 ARXIV
[7]   Anisotropic Mixed-Norm Hardy Spaces [J].
Cleanthous, G. ;
Georgiadis, A. G. ;
Nielsen, M. .
JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (04) :2758-2787
[8]   Metaplectic representation on Wiener amalgam spaces and applications to the Schrodinger equation [J].
Cordero, Elena ;
Nicola, Fabio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (02) :506-534
[9]   On commutators of fractional integrals [J].
Duong, XT ;
Yan, LX .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) :3549-3557
[10]  
Feichtinger H.G., 2020, FUNCTION SPACES