Mixed-Norm Amalgam Spaces and Their Predual

被引:6
|
作者
Zhang, Houkun [1 ]
Zhou, Jiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
mixed norm; amalgam spaces; predual; fractional integral operators; commutators; LP; REPRESENTATION; COMMUTATORS; LEBESGUE; THEOREM;
D O I
10.3390/sym14010074
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce mixed-norm amalgam spaces (L-p & RARR;,L-s & RARR;)(alpha)(R-n) and prove the boundedness of maximal function. Then, the dilation argument obtains the necessary and sufficient conditions of fractional integral operators' boundedness. Furthermore, the strong estimates of linear commutators [b,I-gamma] generated by b & ISIN;BMO(R-n) and I gamma on mixed-norm amalgam spaces (L-p & RARR;,L-s & RARR;)(alpha)(R-n) are established as well. In order to obtain the necessary conditions of fractional integral commutators' boundedness, we introduce mixed-norm Wiener amalgam spaces (L-p & RARR;,L-s & RARR;)(R-n). We obtain the necessary and sufficient conditions of fractional integral commutators' boundedness by the duality theory. The necessary conditions of fractional integral commutators' boundedness are a new result even for the classical amalgam spaces. By the equivalent norm and the operators St(r)((p))(f)(x), we study the duality theory of mixed-norm amalgam spaces, which makes our proof easier. In particular, note that predual of the primal space is not obtained and the predual of the equivalent space does not mean the predual of the primal space.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Operators on Mixed-Norm Amalgam Spaces via Extrapolation
    Lu, Y.
    Zhou, J.
    Wang, S.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2023, 58 (04): : 226 - 242
  • [2] MIXED-NORM α-MODULATION SPACES
    Cleanthous, Galatia
    Georgiadis, Athanasios G.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (05) : 3323 - 3356
  • [3] Anisotropic Mixed-Norm Hardy Spaces
    Cleanthous, G.
    Georgiadis, A. G.
    Nielsen, M.
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (04) : 2758 - 2787
  • [4] PSEUDODIFFERENTIAL OPERATORS ON MIXED-NORM α-MODULATION SPACES
    Nielsen, Morten
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (03) : 875 - 887
  • [5] Interpolations of Mixed-Norm Function Spaces
    Wu, Suqing
    Yang, Dachun
    Yuan, Wen
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) : 153 - 175
  • [6] Anisotropic mixed-norm Campanato-type spaces with applications to duals of anisotropic mixed-norm Hardy spaces
    Huang, Long
    Yang, Dachun
    Yuan, Wen
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (04)
  • [7] Mixed-norm Herz-slice spaces and their applications
    Zhang, Lihua
    Zhou, Jiang
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2025, 40 (01)
  • [8] DUAL SPACES OF MIXED-NORM MARTINGALE HARDY SPACES
    Weisz, Ferenc
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (02) : 681 - 695
  • [9] Molecular Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications
    Liu, Jun
    Huang, Long
    Yue, Chenlong
    MATHEMATICS, 2021, 9 (18)
  • [10] FOURIER MULTIPLIERS ON ANISOTROPIC MIXED-NORM SPACES OF DISTRIBUTIONS
    Cleanthous, Galatia
    Georgiadis, Athanasios G.
    Nielsen, Morten
    MATHEMATICA SCANDINAVICA, 2019, 124 (02) : 289 - 304